| € the Yocto Project

foss-north // Gothenburg 2018

Introduction

auresan
yocto - o)

PROIJECT

e Gordan Markus
* Embedded Linux, Luxoft, PELUX, AUTOSAR Adaptive

Questions for the crowd

* How many attendes have built their own Embedded Linux image?
* How many attendes have used the Yocto Project?

$ systemctl start yocto-presentation

Embedded Linux Build Systems

e Goals
* Creating custom Embedded Linux images
e Cross-compiling applications
Packaging applications
Create integration points for custom software
Testing output binaries
Checking ecosystem compatibilty

Embedded Linux Build Systems

* Buildroot

* OpenWRT

* PTXdist

* Yocto Project / OpenEmbedded

My Embedded Linux Path

. Buildroot . PTXdist » Pt(;?ézt

What is the Yocto Project?

,The Yocto Project (YP) is an open source collaboration project that
helps developers create custom Linux-based systems for embedded
products, regardless of the hardware architecture.”

Yocto Project

* Core building blocks
* OpenEmbedded-Core
* BitBake
* Poky

OpenEmbedded-Core

* Evolved from OpenEmbedded in collaboration with Yocto

* Compilation of components shared between OE based systems
* Layers
* Recipes
* Classes

Yocto Recipe

* Metadata file

* Describes the component dependencies, build, deploy steps, etc.
 Specific syntax

Copyright (C) 2817 Pelagicore AB
SPDX-License-Identifier: MIT

H OH K K

SUMMARY = "A template C/C++ library”

DESCRIPTION = "& C/C++ shared library blueprint”

AUTHOR = "Gordan Markui <gordan.markusf@pelagicore.com>"

HOMEPAGE = "https://github.com/Pelagicore/template-library™

LICENSE = "MPL-2.8"

LIC FILES CHKSUM = "file://LICENSE;md5=815ca599c9df247a0c7f619babl23dad"
PV = "1.@+git%{SRCREV]}"

PR = "r@"

SRCREV = "29dedbd859d725ee6d18686ee5449069412de2 k"

SRC_URI = “"git://github.com/Pelagicore/template-library.git;protocoel=https;branch=master"

S = "${WORKDIR}/git/"

inherit cmake pkgconfig

PACKAGES = "
S{PN} i
27PN} -dbg \
S{PN}-dev

FILES Z{PN} += "
${libdir}/libtemplate-library.so

Component information

Source information

Build and deploy
instructions

OpenEmbedded-Core

* Example recipes
e ALSA
* Busybox
* cmake
e autoconf

Yocto Layer

* Collection of recipes that have a common purpose

* Including a layer gives you the possibility to use its components
* meta- prefix

Yocto Layer

* Example layers
* meta-qt5
* meta-networking
* meta-intel
* meta-project-foo

BitBake

* Build engine
* Parses and interprets the metadata files
* Task scheduler

BitBake

Image — list of Ordered
packages tasklist

Configuration

Poky

* Yocto reference implementation

* Collection of tooling and configuration used to create a new distro

User
Configuration

(:bb + patches)

Machine BSP
Configuration

Policy
Configuration

Upstream
Project
Releases

Source
Fetching

Patch
Application

Config/
Compile/
Autoconf
as needed

Local

Qutput
Analysis for
package
splitting plus
package
relationships

SCMs
(optional)

.deb
generation

rpm
generation

ipk

generation

Open Embedded Architecture Workflow

. Output Packages

Process Steps (tasks)

. OCutput Image Data

Upstream Source

Metadata/Inputs

Build System

Image SDK
Generation Generation
QA
Tests

Application

Development
SDK

OK, great. But what are the cool parts?

Layered Approach

* Logical separation and aggregation of software components
* Hardware agnostic development

* Maintainability

* Reusability

Layered Approach

Highest priority

Project layer
(meta-project-foo)

Commercial layer
(meta-product-bar)

Ul layer
(meta-qt5)

Hardware layer
(meta-intel)

Yocto layer
(meta-yocto)

OpenEmbedded layer
(oe-core)

Lowest priority

Development and Debugging

* Production image vs development/debug image
* Features grouped in IMAGE FEATURES

Development and Debugging

(Some of these are automatically added to certain image types)
"dbg-pkgs" — add —-dbg packages for all installed packages

(adds symbol information for debugging/profiling)
"dev-pkgs" add -dev packages for all installed packages

(useful if you want to develop against libs in the image)
"tools—sdk" — add development tools (gcc, make, pkgconfig etc.)
"tools—-debug" — add debugging tools (gdb, strace)
"tools-profile™ - add profiling tools (oprofile, exmap, lttng valgrind (x86 only))
"tools-testapps™ add useful testing tools (ts print, aplay, arecord etc.)
"debug-tweaks" make an image for suitable of development

e.g. ssh root access has a blank password

There are other application targets too,
and meta/packages/tasks/task-poky.bb for more details.

#
#
#
#
#
#
#
#
#
#
#
#
#
#

Development and Debugging

* Including dbg packages to the build — NOT FEASIBLE in the long run
* Creating a remote filesystem with debug symbols

conf/local.conf

IMAGE_GEN_DEBUGFS = "1"
IMAGE FSTYPES DEBUGFS = "tar.bz2"

Development and Debugging

* Connect host GDB to the GDB server on the target
* Point to remote debugfs to find the debug symbols
* Profit

Testing

 Test image concept
e Automated runtime testing

* Virtualized or real hardware target
conf/local.conf

TEST_IMAGE = "1"

Testing

 Set of predefined unit tests
* ping, ssh, dmesg, syslog, etc.
e Easy to add custom tests

conf/local.conf

TEST _SUITES append = "ping ssh auto”

Testing

* Test results are available in the BitBake console
* Easy integration with the continous integration system

License Compliance

* How to maintain compliance with various open source licenses during
the product’s lifecycle?

License Compliance

* Recipe variables
* LICENSE
° LIC_FILES_CHKSUM SUMMARY = "A template C/C++ service”

DESCRIPTION = "A C/C++ source code repository blueprint™
AUTHOR = "Gordan Marku: <gordan.markusfipelagicore.com>"
HOMEPAGE = "https://github.com/Pelagicore/template-service”

* What happens if the CICENSE - THPL-2.0"

LICENSE flle Changes LIC_FILES_CHKSUM = "file://LICENSE;md5=815ca599c9df247a8c7f619babl23dad"”

PV = "1.@4git${SRCREV}"

between revisions? PR = "ro”

License Compliance

e QtWebEngine license

SUMMARY = "QtWebEngine combines the power of Chromium and Qt"

Read http://blog.gt.io/blog/2816/01/13/new-agreement-with-the-kde-free-gt-foundation/
LICENSE = "B5SD & (GPL-3.8 & The-Qt-Company-GPL-Exception-1.8 | The-Qt-Company-Commercial) & { LGPL-3.8 | The-Qt-Company-Commercial)"

LIC_FILES CHKSUM = "
file://src/core/browser_context qt.cpp;mdS5=b5193b7d68699260T3b4Bb201365c8d2;beginline=1;endline=38 \
file://src/3rdparty/chromium/LICENSE ;md5=0fcal2217a5d49al4dfe2d11837bb34d
file://LICENSE.LGPL3;md5=8211fdel2ccB8ade2477602F5953F5b71
file://LICENSE.GPLv3;md5=88e2b9117ecbeddchsedeecdcadQarias i
file://LICENSE.GPL3;md5=d322309bcb673463ab874e80d47Tae504 \
file://LICENSE.GPL3-EXCEPT;md5=763d8c535a234d9a3Tb682c7ecbhbc®73
file://LICENSE.GPL2 ;md5=h234eeddrdfsfceddinasnfdatdiadzas

https://github.com/meta-qt5/meta-qt5/blob/master/recipes-qt/qt5/qtwebengine_git.bb

License Compliance

e Bill of materials
* Source code
* License text
* Modifications

License Compliance

* Blacklisting licenses using the INCOMPATIBLE LICENSE variable

* Manually remove dependencies on or provide alternatives to
components that are required

License Compliance

* GPLv3 software is still a ,,big no-no!” in certain industries ®

* The goal is to prevent user modification on an embedded device

conf/local.conf

INCOMPATIBLE LICENSE = ,, \
GPL-3.0 \
LGPL-3.0 \
AGPL-3.0 \

License Compliance

e Exclusion using the meta-gplv2 layer

, This layer contains a set of recipes corresponding to old, obsolete
versions of software that are GPLv2 licensed where the upstreams
have moved to GPLv3 licenses. These were part of OE-Core until it was
realised they are a ticking timebomb with regard to security updates
and general maintenance.”

https://layers.openembedded.org/layerindex/branch/master/layer/meta-gplv2/

To summarize

* Yocto is fun

* It has awesome features to ease your development
* It is hard to learn but it is totally worth it

* Share your experience with a technology you like

$ systemctl stop yocto-presentation

Question time!

Contact: gordan.markus@gmail.com

Slides under CC-BY-SA 3.0

mailto:gordan.markus@gmail.com

