
Using open source 
paradigms to teach 

system development
Dimitrios Platis

@PlatisSolutions
dimitris@platis.solutions



About me Dimitrios Platis

● Grew up in Rodos, Greece
● Software Engineer @ Edument, 

Gothenburg
● Course responsible @ Gothenburg 

University
● Interests:

○ Embedded systems
○ Software Architecture
○ API Design
○ Open source software & hardware
○ Robots, Portable gadgets, IoT
○ 3D printing
○ Autonomous Driving

● Website: https://platis.solutions

https://platis.solutions






Background
DIT112



DIT112

● Software Engineering & 
Management BSc

● Compulsory course
● 2nd term
● 7.5 credits
● ex-DIT524 (15 credits)

● ~70 students
● ~12 groups
● Some experience in JAVA
● Have heard of SCRUM
● A bit of experience in git
● A lot of imagination



DIT112 learning outcomes

● Define software in a system context
● Describe system requirements, system and 

software design, and relations between the 
requirements and software design

● Organize software development teams and 
conduct software development projects,
using modern software engineering 
methodologies such as agile development

● Elicit, analyze, and document requirements 
in the form of a requirements specification

● Design software and document outcome of 
design work

● Implement software according to a 
documented software design

● Reflect on integration between software and 
non-software components

● Evaluate traceability between requirements, 
design, and implementation artefacts



When software 
development becomes 
engineering
It is not about hacking something together that 
"works", but establishing a development 
process that is:

● Repeatable
● Defined
● Controlled



Smartcar
A versatile and easy to use vehicle platform 

for hobby-grade projects



Smartcar ● Easy-to-use software library
○ Hardware agnostic
○ Support for multiple sensors

● ESP32 microcontroler
○ WiFi
○ Bluetooth
○ FreeRTOS

● L3G4200D gyroscope
● Directional speed encoders
● VL53L0X "micro-LIDAR"
● 5V tolerant I/O pins
● 8 AA batteries
● Open source software & hardware



DIT112-V19
DIT112-V20

http://www.youtube.com/watch?v=33cHNJ9j7Kc
http://www.youtube.com/watch?v=Bo9d2Y1cg9M
http://www.youtube.com/watch?v=jtvX933osug
http://www.youtube.com/watch?v=ye_FWu3hwkU
http://www.youtube.com/watch?v=SBHGXtWkZJ4
http://www.youtube.com/watch?v=X-CesTomLoQ
http://www.youtube.com/watch?v=qLNNTJLamhI
http://www.youtube.com/watch?v=Qo-2rCpGn8w
http://www.youtube.com/watch?v=r77ristYOuk
http://www.youtube.com/watch?v=DHMe0ubszqI
https://github.com/DIT112-V19
https://github.com/DIT112-V20


Challenges
Immature system development process



Sound familiar?

● Lack of domain knowledge
● Untracked work

○ Important for grading
● Unintegrated features

● Scope creep
● Lack of communication

○ Features
○ Defects
○ Vision

● Intermittent quality
○ Frequent regressions



Improving maturity
Inspired by FOSS development



Working agile



A
gi

le
 in

 
D

IT
11

2 ● Product owner
○ Also customer at times

● Small & valuable increments
● Weekly sprints

○ Demos
○ Planning

● User stories
○ Persona
○ Acceptance criteria

● PO accepts only what is integrated (i.e. on master)



Requirements 
traceability



2-way traceability
Software project terminology

⇆ Requirements (or Epics)
⇆ Tasks (or User stories)

⇆ Commits

○ Multiple user stories per 
epic

○ One epic per user story
○ Link commits to user 

stories

GitHub features

⇆ Milestones
⇆ Issues

⇆ Commits

✓ Multiple issues per 
milestone

✓ One milestone per issue
✓ Link commits and pull 

requests to issues 

Requirements

Tasks

Commits Labels used for 
grouping sprint 
backlog items

https://help.github.com/en/github/managing-your-work-on-github/creating-and-editing-milestones-for-issues-and-pull-requests
https://help.github.com/en/github/managing-your-work-on-github/about-issues
https://help.github.com/en/github/managing-your-work-on-github/linking-a-pull-request-to-an-issue
https://help.github.com/en/github/managing-your-work-on-github/linking-a-pull-request-to-an-issue


Au
to

m
at

ed
 te

st
in

g



Testing

● Verify requirements
● Avoid regressions
● Discover defects before production



Continuous 
Integration



Automated, defined & 
continuous

● Build
● Test
● Release
● Deploy

✓ Merge to master allowed only when CI passes
✓ Personal branches ignored

○ We don't care about your side-project



Documentation



Sustainability & on-boarding

● README.md
○ What/Why/How
○ Demo video

● Wiki
○ User manual
○ Requirements specification

● GitHub pages
○ API documentation



Work tracking



Communication & 
accountability

● Multiple developers 
assigned on issue

○ Pair programming
○ Developers not 

penalized for 
collaborating

● GitHub project
○ Issues broken down to 

tasks
○ Track upcoming, 

ongoing, finished work
○ Automatically move 

issues



Code reviews



Push to master?
No.

✓ Acceptance criteria
✓ Definition of Done
✓ Code review
✓ CI checks



Open development



Peeking is not 
cheating

● Public sprint demos
○ Short, less than 5 minutes
○ Slides discouraged (only 1 allowed)
○ Live demo if possible

● Public development
○ Solutions to common problems
○ Respect licenses

● Public discussions
○ Canvas LMS

■ Forum
■ Chat

○ Slack



Takeaways
What's your excuse?


