
Domain Driven Design (DDD)
with Algebraic Data Types (ADT)

(Mr. Math, SPISE MISU ApS)

2020-11-01 @ foss-north 2020 take II (virtual edition)

https://spisemisu.com/
https://foss-north.se/2020ii/speakers-and-talks.html#rmathiesen

2020-11-01 2 / 34

Overview

● About me (very shortly)

● Domain Driven Design + Algebraic Data Types
– Background

– Programming paradigms

– Demo (live coding)

Note: Slides are released under the CC BY-SA license
– Creative Commons Attribution-ShareAlike (“copyleft”)

https://creativecommons.org/licenses/by-sa/4.0/

2020-11-01 3 / 34

About me (very shortly)

● Mr. Ramón Soto Mathiesen (Spaniard + Dane)

● MSc. Computer Science and minors in Mathematics

● CompSci @ SPISE MISU ApS
– Trying to solve EU GDPR with a scientific approach (https://uniprocess.org)

● Permissive copyleft license (LGPL-3.0)

– Mostly with Haskell and to a lesser extend Elm (PureScript)

● Blog: http://blog.stermon.com/ (slides under /talks/)

● Member of the Free Software Foundation (FSF) since November 2007
● Founder of Meetup F#unctional Copenhageners EST. November 2013

● PureScript / Elm / Haskell / TypeScript / F# / OCaml / Lisp / C++ / C# / JavaScript

https://spisemisu.com/
http://www.eugdpr.org/
https://uniprocess.org/
https://copyleft.org/
https://www.gnu.org/licenses/lgpl-3.0.html
http://blog.stermon.com/
https://www.fsf.org/
https://www.meetup.com/MoedegruppeFunktionelleKoebenhavnere/
http://blog.stermon.com/about/

2020-11-01 4 / 34

Matching of expectations

● In this talk, we will see how it’s possible to add constraints, at compile-
time, to our code implementations so they comply with with a specified
domain

● There will be shown code, but it shouldn't be necessary to know how to
code as it (hopefully or at least the part where ADT are used) will remind of
plain English :)

Note: I would love questions, but please save them to the end of the talk
(Demo + Q&A), as time is limited and I don’t want to overlap other speakers

2020-11-01 5 / 34

Background

● When I’m not working with uniprocesses, I tend to
do some .NET (core) freelance gigs. What I miss the
most, when using the language C#, is that it lacks of
ADT. See slide 36 from one of my recent talks:
– CrmWebApiUtil + LINQ Provider = Cloud (Docker)

https://uniprocess.org/
https://docs.microsoft.com/en-us/dotnet/fundamentals/
http://blog.stermon.com/assets/talks/2020-01-28_DFDS-CrmWebApiUtil-plus-LINQProvider.pdf
https://docs.microsoft.com/en-us/dotnet/fundamentals/

2020-11-01 6 / 34

Background

https://docs.microsoft.com/en-us/dotnet/fundamentals/

2020-11-01 7 / 34

Background

● As I mention in the abstract of this talk, the .NET design team just added product
types to C#, which is really good, but they still miss the most important one,
which is sum types (*)

● We will use a tool, that has support for the following programming paradigms, in
order to not get lost in translation (my opinions might be biased, bare with me):
– Imperative: Used in languages like C

– Object Oriented (OO): Used in languages like Java, C++ or C#

– Functional Programming (FP): Used in languages like OCaml or Haskell

(*) - Later on we will see how we can mimic product types with sum types

https://docs.microsoft.com/en-us/dotnet/fundamentals/
https://docs.microsoft.com/en-us/dotnet/fundamentals/

2020-11-01 8 / 34

The tool (F#)
Definition and features

● Wikipedia: is a functional-first, general purpose, strongly typed,
multi-paradigm programming language that encompasses
functional, imperative, and object-oriented programming methods.

● It has the following features, that will help us understand code from
both snippets in the slides and from the demo:
– Simple and intuitive (readable)

– Functions as first-class citizens

– Strongly type-safe

– With a built-in REPL

https://en.wikipedia.org/wiki/F_Sharp_(programming_language)
http://fsharp.org/

2020-11-01 9 / 34

The tool (F#)
Simple and intuitive (readable)

● Forced indentation, just like Python, in combination
with |> operator, makes it easy to read again & again

https://www.airpair.com/f%23/tips-n-tricks/seven-ineffective-coding-habits-many-fsharp-programmers-dont-have#visual-dishonesty
http://fsharp.org/

2020-11-01 10 / 34

The tool (F#)
Functions as first-class citizens

● Higher-order functions.
– Passing functions as arguments is just like gluing

functions together, composing them to bigger ones:

http://fsharp.org/

2020-11-01 11 / 34

The tool (F#)
Strongly type-safe

● Computer says no:

http://fsharp.org/

2020-11-01 12 / 34

The tool (F#)
With a built-in REPL

● Read, Evaluate, Print and Loop (REPL):
– Possible to evaluate functions, modules and types

directly from the IDE to F# interactive (interpreted code)

– This makes it easy to reason about creating smaller
pieces of logic and composing them to greater blocks

– F# script files (.FSX) are also interpreted, which means
that files are type checked before executing a single line

http://fsharp.org/

2020-11-01 13 / 34

The tool (F#)
Imperative code example

http://fsharp.org/

2020-11-01 14 / 34

The tool (F#)
OO code example

http://fsharp.org/

2020-11-01 15 / 34

The tool (F#)
FP code example

http://fsharp.org/

2020-11-01 16 / 34

Programming paradigms
Imperative code

● Pros
– Data-structs are represented as value types and not reference types (fast)

● Cons
– Instantiated with default values for each field

– All fields are accessible and therefore can be mutated, not ideal to work with
concurrent software (*)

– Lack of polymorphism so a lot of repetitive code

(*) - As in F#, they have made value types immutable by default so you will
have to mark the binding value as mutable

2020-11-01 17 / 34

Programming paradigms
Imperative code

http://fsharp.org/

2020-11-01 18 / 34

Programming paradigms
OO code

● Pros
– Re-usability of code by inheritance

– Encapsulation of internal state (get and set methods)

– Enforce logic

– Specify logic to be overridden

● Cons
– Internal state, not ideal to work with concurrent software

– Logic is bound to the data (lack of separation)

– Pattern matching on: char, string, bool, integrals (int, long) and enum types (C# 6.0 and earlier)
● From C# 7.0 on any non-null type (with the is casting pattern)

– Upcasting conversion can be statically type checked at compile-time

– Downcasting conversion can not be type checked at compile-time

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/switch#the-match-expression
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/proposals/csharp-7.0/pattern-matching

2020-11-01 19 / 34

Programming paradigms
OO code

http://fsharp.org/

2020-11-01 20 / 34

Programming paradigms
FP code

● Pros
– Simple and concise

– ADT ensure that we don’t need to do any casting at all

– ADT types provide constructors (uncurried in OCaml/F#/Haskell but the later also have
support for curried)

– Exhaustive pattern-matching on all types

– Data is immutable by default, therefore ideal to work with concurrent software

● Cons
– All fields are accessible and therefore can be changed, lack of encapsulation

– Immutability can allocate a lot of memory and therefore make software slow

2020-11-01 21 / 34

Programming paradigms
FP code

http://fsharp.org/

2020-11-01 22 / 34

ADT + DDD

https://www.onewed.com/photos/a-match-made-in-heaven-wedding-favor-matchbox-tea-and-becky-invitations-198219/

2020-11-01 23 / 34

ADT + DDD
Algebraic data types

● Product types: think of it as tuples (pairs, triples, ...): (42uy,'C')
– Record types are just tuples with labels:

{ age: 42uy; initial: 'C' }

● Sum types (also know as Union types): think of it as disjoint sets (have no element in
common). The element must be in one of the assigned disjoint sets:
– A person is either a child or an adult:

type person = Child | Adult

– Temperature is measured Celsius or Fahrenheit:
type temperature = Celsius of float | Fahrenheit of int

Note: Record types are equivalent to single case Sum types, with named fields
type rt = { age : byte ; initial : char }

type st = SC of age : byte * initial : char

http://fsharp.org/

2020-11-01 24 / 34

ADT + DDD
Algebraic data types

● ADT allows you to pattern match on all branches:
type suit = Clubs | Diamonds | Hearts | Spades
type card = { rank : byte ; suit : suit }
let isAce : card -> bool = function
 | { rank = 1uy } -> true
 | ______________ -> false

type person = Child | Adult
let assertAge : byte -> person -> bool =
 fun age ->
 function
 | Child -> age < 18uy
 | Adult -> age >= 18uy

Note: For exhaustive pattern-matching in F#, use the following compiler flag:

--warnaserror:25

http://fsharp.org/

2020-11-01 25 / 34

ADT + DDD
Algebraic data types

● With ADT you will be able to compose simpler types together in order to
create more complex data structures:

type product = byte * char (* = Cartesian product)

type record = {age : byte ; initial : char} (; = Cartesian product)

type sum = Foo of byte | Bar of char (| = Union)

● This is ideal for domain modeling (TDD/DDD) as it allows you to use
these mathematically constraints to:
“Make Illegal States Unrepresentable” -- Yaron Minsky

Note: If you can’t represent invalid data, you don’t need to test for it

https://blog.janestreet.com/effective-ml-revisited/
https://twitter.com/@yminsky
http://fsharp.org/

2020-11-01 26 / 34

ADT + DDD
Domain Driven Design

Domain modeled with an ER-diagram

2020-11-01 27 / 34

ADT + DDD
Domain Driven Design

● It’s intuitive to see that we aren’t able to make a
booking unless a plane is specified (mandatory)

● Also, we can see that we might book a hotel or rent a
car, but they are not required (optional)

● I don’t think we can get any other information out
from this diagram unless we also read some text

● Which products are they offering?

2020-11-01 28 / 34

Domain modeled with F# type definitions

ADT + DDD
Domain Driven Design

http://fsharp.org/

2020-11-01 29 / 34

ADT + DDD
Domain Driven Design

● We can easily see the 3 product which are offered
– Basic, Combo and Fullpack

● Combo products can be of two types
– “With hotel” and “With car”

2020-11-01 30 / 34

ADT + DDD
Domain Driven Design

● We can see some constraints:
– A Booking can either be Basic, Combo or Fullpack (disjoint union)

– With each of these products requirements (tuples):
● Basic (plane) single→

● Combo (plane, hotel) pair or (plane, car) pair→

● Fullpack (plane, hotel, car) triple→

– We can also see that a plane will require the following information (still a tuple):
● plane (Outbound date and time, Return date and time, Destination country)→

Note: With this approach, the domain design and implementation are
still separated, even though, both will be represented as code

2020-11-01 31 / 34

ADT + DDD
Demo

● Lets implement the domain of a Book, usable for a Bookstore or a Library:
– Types: Audio, electronic and physical

– Formats:
● AAC, MP3, M4B and WAV (audio books)
● EPUB, MOBI and PDF (electronic books)
● Hardcover and Paperback (printed books)

– Info:
● Mandatory: title, authors, publisher, language, isbn10 and isbn13
● Optional: pages

– Rating: 1 to 5 stars

http://fsharp.org/

2020-11-01 32 / 34

ADT + DDD
Demo

Note: Encapsulation can be achieved by limiting the exposure by using modules
and private constructors. The functional way implies, in some cases, to keep sum
type constructors private to modules:

module Review =
 type rating = private Rate of byte
 let rate x =
 if x >= 0uy && x <= 5uy
 then Some (Rate x)
 else None
Review.Rate 42uy
(* error FS1093: The union cases or fields of the type 'rating' are not
 accessible from this code location *)
Review.rate 42uy
(* > val it : Review.rating option = None *)

http://fsharp.org/

2020-11-01 33 / 34

Summary

● All programming paradigms have their pros/cons but personally, since
I’m an advocate of strongly-typed code, I think it is easier (and sound)
to model and design business logic into applications in a more safe,
secure and robust manner by using ADT. Hopefully, in a near future,
the C# design team will add support for sum types

● Therefore I hope I have convinced you that ADT are ideal for domain
modeling (TDD/DDD) as it allows you to use mathematically
constraints to: “Make Illegal States Unrepresentable” -- Yaron Minsky

Reminder: If you can’t represent invalid data, you don’t need to test it

https://blog.janestreet.com/effective-ml-revisited/
https://twitter.com/@yminsky
https://foss-north.se/2020ii/speakers-and-talks.html#rmathiesen

2020-11-01 34 / 34

Q&A

Any questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

