
Infrastructure as Code (anti) Patterns
Kris Buytaert @krisbuytaert
Foss North April 2024

O11y 1

Kris Buytaert

• I used to be a developer
• Then I became an Ops person
• Chief Yak Shaver @ o11y.eu
• Organiser of #devopsdays, #cfgmgmtcamp, #loadays, . . .
• Cofounder of all of the above
• Everything is a Freaking DNS Problem
• DNS : devops needs sushi
• @krisbuytaert on twitter/github/mastodon/bluesky

O11y 2

O11y.eu

• Inuits.eu Spinoff
• Open Source Observability
• Currently supporting the Prometheus Ecosystem
• Professional Services & Support (now)
• LTS Release (Long Term stable release) (now)
• Prometheus “Distribution” (soon)

O11y 3

Devops origins

Figure 1: center
O11y 4

Devops definition

A global movement to improve the quality of software delivery
leveraging Open Source experiences , started in Gent in 2009

O11y 5

Why we study History

• Because I‘m a grumpy old developer / sysadmin
• Because I‘m opinionated
• Because History Repeats
• Because we need to learn from our mistakes.

O11y 6

We love running in circles

Figure 2: even the devopsdays ams visitorO11y 7

Deploying an Infrastructure

• 1996 : Manual installation
• 2001 : Mondo Rescue (reproducable single instance)
• 2003 : System Imager , fast reproducable “identical”

Infrastructure
• Image Sprawl
• “Overrides”

• 2005 : JeOS + Early IAC (CfEngine / Kickstart / FAI)
• 2010 : Desired State infrastructure as code , Puppet, Chef

etc
• 2012 : Ansible
• 2013 : Docker
• 2014 : Terraform , K8s
• 2017 : Pulumi
• 2023 : OpenTofu

O11y 8

20+ years of changes

• 1 (Snowflake) server
• Multiple (snowflake) servers (cluster nodes)
• Virtualization
• Cloud
• Containers

O11y 9

Some of The problems

• Manual error
• Differences in nodes due to manual changes
• Not reproducable
• Humans
• Scale

O11y 10

Config Drift

Figure 3: dev vs uat vs prod

O11y 11

Image Sprawling & Golden Images vs JeOS

• Manually Crafted Snowflake
• Copied and modified
• Copied and modified
• Impossible to trace origin
• Impossible to reproduce
• Patching / Security nightmare

O11y 12

What’s wrong with this GW-Basic code ?

FROM ubuntu
RUN apt-get update
RUN apt-get install -y git
RUN git clone git@github.com:prometheus/prometheus.git
RUN make install

O11y 13

What is Infrastructure as Code

• Treat configuration automation as Code
• Model your infrastructure
• Development best practices

• Model your infrastructure
• Version Control
• Pipeline your Code
• Test your Code

O11y 14

What is infrastructure ?

Everything you need to run your software.
• network
• storage
• compute: vm , container, orchestrator

O11y 15

Infrastructure as Code Goals

• Reproducible Environments
• You never deploy 1x
• Local Test environments
• Development / User Acceptance / Testing / Shadow /

Production / DR
• HA <- Keep cluster configuration in sync
• Prevent Configuration drift
• Cheap Disaster recovery

O11y 16

2025 IaC Requirements

3 types of tools needed
• Provisioning
• Desired state
• Orchestration

O11y 17

Provisioning

• Create me an instance of application X
• Container instance
• VM instance
• Service X configuration via API e.g Tofu , Pulumi

O11y 18

Desired state

Ensure that this file present / service is running
• With these permissions
• Always / Verified

e.g Chef, Puppet, Salt, “GitOps”

O11y 19

Orchestration

• Non frequent
• Trigger action X on resource Y based on characteristics A,B

and or C
• First do X here then do Y there
• One off actions e.g Ansible, Salt, Puppet Bolt, kubeapply

O11y 20

Idempodency

• In computing, an idempotent operation is one that has no
additional effect if it is called more than once with the same
input parameters.

• Not idempotent :
echo “root=disabled” » /etc/someconfigfile

O11y 21

IaC & CMDB

Frequent enforcing desired state with reporting = Automated
population of a CMDB (Single source of truth) , with up to date
data Side Effect : Having a single source from where to generate
dynamic configuration eg. reverse proxy , firewall rules,
monitoring configuration, backup configuration

O11y 22

Didn’t containers solve this ?

• Where do you deploy them ?
• Do you put everything in containers ?
• How do they know their configuration ?
• export SOMEVARIABLE=“abc” is harmful.

O11y 23

Questions to ask :

• Do you want a reproducible infrastructure ?
• Do you want to reduce manual error ?
• Do you want to achieve desired state ?
• Do you want to have automated configuration for

monitoring, metrics, backups, security etc ?
• Do you want to trivially spin up different identical

environments (dev/uat/prod/dr)
• Do you want to be able to detect and prevent config drift ?
• Do you want to prevent image sprawl ?

O11y 24

The Patterns

O11y 24

Pattern: It works from my homedir

• Code is not in source control
• Bolt / Ansible / openTofu is triggered from the developer’s

local machine
• Works for individual admin
• Doesn’t Scale
• Prevents Collaboration

O11y 25

Pattern: It works from my workstation but its in git

Improvement over $prev, but still doesn’t scale Collaboration
has been improved.

O11y 26

Pattern: We only automate the OS

• Just the operating System
• Maybe some basic services
• Application is untouched
• Partial source of maybes
• Not suitable for derived configuration
• Kill your Silos

O11y 27

Pattern: We automate all the things

• Provisioning
• Operating System
• Middle Ware
• Application

O11y 28

Pattern: PCS

• Package
• Config
• Service

O11y 29

Pattern: PCS NFR

• PCS
• Non Functional Requirements
• Monitoring
• Backups
• External dependencies
• Metrics
• . . .

O11y 30

Pattern: Reproducable and Scalable Infrastructure

Figure 4: Stacks

O11y 31

Pattern: Multiple tools overwrite changes

• Ops use Chef but Devs use Java templating tool or
• openTofu but Manual changes from UI.

Variants:
• Non centralized code base, people/teams run code from

local forks undoing changes made by colleagues
• Templating tool is not idempotent (ruby sort ? / XML)
• Bonus points if the tool restarts a service on a change

O11y 32

Pattern: Centralised apply , from source control

• Code is checked into a git repository
• Code is tested
• The only way to apply is by central user

O11y 33

Pattern: We haven’t run it for 6 months

• Tool is run once at deploy time then yolo
• manual changes afterwards are not identified or reversed
• State is not enforced, people are afraid to rerun playbooks
• Now we don’t dare to update anymore

Orchestration only mode, no desired state AKA Yolo or
Integrator mode

O11y 34

Pattern: It’s broken anyhow .

• Reporting says it’s broken, we are not going to fix it
• Its been disabled for weeks, local modifications break it
• See Config Drift

O11y 35

Pattern: We run it every X minutes

• X < 120
• Periodically we run ensure the state of our Infrastructure
• We prevent config Drift
• We actively monitor broken runs
• We actively monitor change frequency

We have achieved desired state of our infra.

O11y 36

Pattern: We run it in nooop now

• We setup everything, it worked for a while
• Then we broke service A ,
• Then something unrelated broke service B
• Automation got blamed
• We are not allowed to enable it again
• Team X doesn’t trust automation,
• Often Team X = Security
• We manually make the changes now , but we have visibility

on drift.
• We have semi desired state

O11y 37

Pattern: We have a pipeline

Figure 5: A gitops pipeline, from before K8s existed

O11y 38

Environments

What is an Environment , a stack, a platform ?
A logically split of set of servers that together offer a service,
Typically existing in dev/uat/prod flavours

O11y 39

Pattern : Using Environments

• Limiting Blast radius
• Easy to spin up multiple variants
• Feature flagged code introduction
• And promotion of features
• Clear line of ownership (team bound)
• Same code , different config per environment
• Easier release management

O11y 40

Pattern : Not using environments

• Huge blast radius
• Potential Scaling issues
• Difficult to “promote” changes
• Upgrade everthing or write host based if then case

spaghetti
• Code duplication : role_app_dev, role_app_uat,

role_app_prod

O11y 41

Pattern: Config is hardcoded in the code

• Typically with no environments
• Environment specific config is hardcoded
• See Config drift

O11y 42

Pattern: Config Data defines config per environment

• The same codebase is used
• Only the config data differs
• Multiple Environments possible

O11y 43

Pattern: We don’t test

• Code is run
• We will see the errors when they happen
• Code is not tested

O11y 44

Pattern: Secrets are in code

• Our code / data is full of credentials
• Human readable
• Checked out on everybody’s laptop.
• They are placed in clear text on the servers
• They almost never change

O11y 45

Pattern: Secrets are in a secure Store

• Our code looks up credentials from a central services
• Humans can’t read those credentials
• They get rotated automatically
• They are almost never stored on disk

O11y 46

Pattern: Single source of truth

• Every config run
• Collect information of the run,
• Store that information
• Be able to query a central source with live, correctly,

machine generated data
• Reconfigure services based on changes in that data
• Full lifecycle
• Decomission instance => Automatically Clean out the data

O11y 47

SSOT : e.g Puppet Exported Resources

Figure 6: center
O11y 48

Pattern: No single source of truth

• Our Ansible playbook does a git commit to a config repo
• That repo gets checked out on the monitoring server
• Humans also modify this config
• Information is scattered over different tools

You can’t leverage the real power of automation , no dynamic
reconfiguration of resources therefore configuration is often
done manually , but through a tool

O11y 49

Pattern: Provisioning from a UI

“Blue printing”
Building a UI on top of a provisioning framework is typically an
intermediate step before people realize they either need to build
in all AAA functionality and buy a bloated tool.
Or realize git + openTofu solves these problems in a better way.
Typically a pattern like this is enforced by management.

O11y 50

Pattern: we ignore the existing (community) code

• We have written all code in house ?
• What do you mean there are modules on github to manage

apache ?
• We spent about 3 months building our own
• Upstream Code Quality is an indicator

O11y 51

Pattern: We love Branching

• Aka We do NOT understand Continuous Integration
• We have mapped our environments to git branches
• Obviously they are long running
• We are cherry picking changes from uat to prod
• We don’t test those combinations
• We are in merge hell now

We have recreated config drift by design.
(Puppet r10k is an antipattern.) So is running your gitops from
multiple branches.

O11y 52

About Open Source

• Most tools start out as Open Source
• Communities contribute modules /roles / recipes . . .
• Sometimes Communities get Betrayed

O11y 53

Lessons Learned

• All of these people say they are doing infrastructure as
Code

• Some with 0 real benefit
• Find the patterns you like / dislike
• Implement or remove the ones you please
• My preferences might not fit your use case

O11y 54

Homework

Please stop clicking around and automate

Please think about how your application can be
configured

O11y 54

Contact

Kris Buytaert

olly

kris@o11y.eu

https://o11y.eu

info@o11y.eu

O11y 54

