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Kris Buytaert

• I used to be a developer
• Then I became an Ops person
• Chief Yak Shaver @ o11y.eu
• Organiser of #devopsdays, #cfgmgmtcamp, #loadays, . . .
• Cofounder of all of the above
• Everything is a Freaking DNS Problem
• DNS : devops needs sushi
• @krisbuytaert on twitter/github/mastodon/bluesky
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O11y.eu

• Inuits.eu Spinoff
• Open Source Observability
• Currently supporting the Prometheus Ecosystem
• Professional Services & Support (now)
• LTS Release (Long Term stable release) (now)
• Prometheus “Distribution” (soon)
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Devops origins

Figure 1: center
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Devops definition

A global movement to improve the quality of software delivery
leveraging Open Source experiences , started in Gent in 2009
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Why we study History

• Because I‘m a grumpy old developer / sysadmin
• Because I‘m opinionated
• Because History Repeats
• Because we need to learn from our mistakes.

O11y 6



We love running in circles

Figure 2: even the devopsdays ams visitorO11y 7



Deploying an Infrastructure

• 1996 : Manual installation
• 2001 : Mondo Rescue (reproducable single instance)
• 2003 : System Imager , fast reproducable “identical”

Infrastructure
• Image Sprawl
• “Overrides”

• 2005 : JeOS + Early IAC (CfEngine / Kickstart / FAI)
• 2010 : Desired State infrastructure as code , Puppet, Chef

etc
• 2012 : Ansible
• 2013 : Docker
• 2014 : Terraform , K8s
• 2017 : Pulumi
• 2023 : OpenTofu
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20+ years of changes

• 1 (Snowflake) server
• Multiple (snowflake) servers (cluster nodes)
• Virtualization
• Cloud
• Containers
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Some of The problems

• Manual error
• Differences in nodes due to manual changes
• Not reproducable
• Humans
• Scale
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Config Drift

Figure 3: dev vs uat vs prod
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Image Sprawling & Golden Images vs JeOS

• Manually Crafted Snowflake
• Copied and modified
• Copied and modified
• Impossible to trace origin
• Impossible to reproduce
• Patching / Security nightmare
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What’s wrong with this GW-Basic code ?

FROM ubuntu
RUN apt-get update
RUN apt-get install -y git
RUN git clone git@github.com:prometheus/prometheus.git
RUN make install
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What is Infrastructure as Code

• Treat configuration automation as Code
• Model your infrastructure
• Development best practices

• Model your infrastructure
• Version Control
• Pipeline your Code
• Test your Code
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What is infrastructure ?

Everything you need to run your software.
• network
• storage
• compute: vm , container, orchestrator
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Infrastructure as Code Goals

• Reproducible Environments
• You never deploy 1x
• Local Test environments
• Development / User Acceptance / Testing / Shadow /

Production / DR
• HA <- Keep cluster configuration in sync
• Prevent Configuration drift
• Cheap Disaster recovery
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2025 IaC Requirements

3 types of tools needed
• Provisioning
• Desired state
• Orchestration
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Provisioning

• Create me an instance of application X
• Container instance
• VM instance
• Service X configuration via API e.g Tofu , Pulumi
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Desired state

Ensure that this file present / service is running
• With these permissions
• Always / Verified

e.g Chef, Puppet, Salt, “GitOps”
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Orchestration

• Non frequent
• Trigger action X on resource Y based on characteristics A,B

and or C
• First do X here then do Y there
• One off actions e.g Ansible, Salt, Puppet Bolt, kubeapply
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Idempodency

• In computing, an idempotent operation is one that has no
additional effect if it is called more than once with the same
input parameters.

• Not idempotent :
echo “root=disabled” » /etc/someconfigfile
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IaC & CMDB

Frequent enforcing desired state with reporting = Automated
population of a CMDB (Single source of truth) , with up to date
data Side Effect : Having a single source from where to generate
dynamic configuration eg. reverse proxy , firewall rules,
monitoring configuration, backup configuration
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Didn’t containers solve this ?

• Where do you deploy them ?
• Do you put everything in containers ?
• How do they know their configuration ?
• export SOMEVARIABLE=“abc” is harmful.
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Questions to ask :

• Do you want a reproducible infrastructure ?
• Do you want to reduce manual error ?
• Do you want to achieve desired state ?
• Do you want to have automated configuration for

monitoring, metrics, backups, security etc ?
• Do you want to trivially spin up different identical

environments (dev/uat/prod/dr)
• Do you want to be able to detect and prevent config drift ?
• Do you want to prevent image sprawl ?
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The Patterns
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Pattern: It works from my homedir

• Code is not in source control
• Bolt / Ansible / openTofu is triggered from the developer’s

local machine
• Works for individual admin
• Doesn’t Scale
• Prevents Collaboration
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Pattern: It works from my workstation but its in git

Improvement over $prev, but still doesn’t scale Collaboration
has been improved.
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Pattern: We only automate the OS

• Just the operating System
• Maybe some basic services
• Application is untouched
• Partial source of maybes
• Not suitable for derived configuration
• Kill your Silos
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Pattern: We automate all the things

• Provisioning
• Operating System
• Middle Ware
• Application
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Pattern: PCS

• Package
• Config
• Service

O11y 29



Pattern: PCS NFR

• PCS
• Non Functional Requirements
• Monitoring
• Backups
• External dependencies
• Metrics
• . . .
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Pattern: Reproducable and Scalable Infrastructure

Figure 4: Stacks
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Pattern: Multiple tools overwrite changes

• Ops use Chef but Devs use Java templating tool or
• openTofu but Manual changes from UI.

Variants:
• Non centralized code base, people/teams run code from

local forks undoing changes made by colleagues
• Templating tool is not idempotent (ruby sort ? / XML)
• Bonus points if the tool restarts a service on a change
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Pattern: Centralised apply , from source control

• Code is checked into a git repository
• Code is tested
• The only way to apply is by central user
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Pattern: We haven’t run it for 6 months

• Tool is run once at deploy time then yolo
• manual changes afterwards are not identified or reversed
• State is not enforced, people are afraid to rerun playbooks
• Now we don’t dare to update anymore

Orchestration only mode, no desired state AKA Yolo or
Integrator mode
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Pattern: It’s broken anyhow .

• Reporting says it’s broken, we are not going to fix it
• Its been disabled for weeks, local modifications break it
• See Config Drift
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Pattern: We run it every X minutes

• X < 120
• Periodically we run ensure the state of our Infrastructure
• We prevent config Drift
• We actively monitor broken runs
• We actively monitor change frequency

We have achieved desired state of our infra.
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Pattern: We run it in nooop now

• We setup everything, it worked for a while
• Then we broke service A ,
• Then something unrelated broke service B
• Automation got blamed
• We are not allowed to enable it again
• Team X doesn’t trust automation,
• Often Team X = Security
• We manually make the changes now , but we have visibility

on drift.
• We have semi desired state
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Pattern: We have a pipeline

Figure 5: A gitops pipeline, from before K8s existed
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Environments

What is an Environment , a stack, a platform ?
A logically split of set of servers that together offer a service,
Typically existing in dev/uat/prod flavours
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Pattern : Using Environments

• Limiting Blast radius
• Easy to spin up multiple variants
• Feature flagged code introduction
• And promotion of features
• Clear line of ownership (team bound)
• Same code , different config per environment
• Easier release management
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Pattern : Not using environments

• Huge blast radius
• Potential Scaling issues
• Difficult to “promote” changes
• Upgrade everthing or write host based if then case

spaghetti
• Code duplication : role_app_dev, role_app_uat,

role_app_prod
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Pattern: Config is hardcoded in the code

• Typically with no environments
• Environment specific config is hardcoded
• See Config drift
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Pattern: Config Data defines config per environment

• The same codebase is used
• Only the config data differs
• Multiple Environments possible
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Pattern: We don’t test

• Code is run
• We will see the errors when they happen
• Code is not tested
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Pattern: Secrets are in code

• Our code / data is full of credentials
• Human readable
• Checked out on everybody’s laptop.
• They are placed in clear text on the servers
• They almost never change
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Pattern: Secrets are in a secure Store

• Our code looks up credentials from a central services
• Humans can’t read those credentials
• They get rotated automatically
• They are almost never stored on disk
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Pattern: Single source of truth

• Every config run
• Collect information of the run,
• Store that information
• Be able to query a central source with live, correctly,

machine generated data
• Reconfigure services based on changes in that data
• Full lifecycle
• Decomission instance => Automatically Clean out the data
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SSOT : e.g Puppet Exported Resources

Figure 6: center
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Pattern: No single source of truth

• Our Ansible playbook does a git commit to a config repo
• That repo gets checked out on the monitoring server
• Humans also modify this config
• Information is scattered over different tools

You can’t leverage the real power of automation , no dynamic
reconfiguration of resources therefore configuration is often
done manually , but through a tool
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Pattern: Provisioning from a UI

“Blue printing”
Building a UI on top of a provisioning framework is typically an
intermediate step before people realize they either need to build
in all AAA functionality and buy a bloated tool.
Or realize git + openTofu solves these problems in a better way.
Typically a pattern like this is enforced by management.
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Pattern: we ignore the existing (community) code

• We have written all code in house ?
• What do you mean there are modules on github to manage

apache ?
• We spent about 3 months building our own
• Upstream Code Quality is an indicator
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Pattern: We love Branching

• Aka We do NOT understand Continuous Integration
• We have mapped our environments to git branches
• Obviously they are long running
• We are cherry picking changes from uat to prod
• We don’t test those combinations
• We are in merge hell now

We have recreated config drift by design.
(Puppet r10k is an antipattern.) So is running your gitops from
multiple branches.
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About Open Source

• Most tools start out as Open Source
• Communities contribute modules /roles / recipes . . .
• Sometimes Communities get Betrayed
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Lessons Learned

• All of these people say they are doing infrastructure as
Code

• Some with 0 real benefit
• Find the patterns you like / dislike
• Implement or remove the ones you please
• My preferences might not fit your use case
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Homework

Please stop clicking around and automate

Please think about how your application can be
configured
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Contact

Kris Buytaert

olly

kris@o11y.eu

https://o11y.eu

info@o11y.eu
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