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AMD Gothenburg – home of MicroBlaze V Team, Sweden – AECG-SSD

Center of Excellence for Processor Development and Cache Coherency

• Classic MicroBlaze
• Enhanced versions approximately once a year since launch 2001

• 10000+ soft IP customer instantiations every month

• Hard MicroBlaze IP subsystems in Zynq MPSoC (3), Versal (14+), …

• 32-bit and 64-bit proprietary ISA

• Linux capable memory management

• Triple Modular Redundancy/Lockstep

• MicroBlaze V (RISC-V – Open Specification Processor Architecture ISA)
• First customer early access in Vivado 2023.2

• Continued enhancements and development ongoing

• Utilizes MicroBlaze code base

• Aimed for both soft IP and hard IP in AMD devices

• Plug-and-Play compatible with classic MicroBlaze

• Enabling RISC-V Open Source SW community tools/flow

• System Cache
• Accelerator Coherency (ACE, CCIX, CHI, CXL protocols)

• L2 cache for MicroBlaze

Stefan Rikard RogerGöran David



AMD Research and Advanced Development (RAD)
 

• Integrated Comms and AI Lab 
• ~20 researchers plus university program

• 5 different locations

• Established as Xilinx Research Labs 18 years ago

• Focus: AI and Communications
• Building systems, architectural exploration, algorithmic 

optimizations, benchmarking

• In collaboration with partners, customers, and 
universities
• ETH Zuerich, Paderborn University, Imperial College, KIT, NTNU, 

Politecnico di Milano, NUS, University of Sydney
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Evolution of AI – Generation of Artificial intelligence Example:

*Chess Computers
*Web Search
*Prediction future
*MR screening
*ADAS ....
*Art/Picture Gen
*Coding Support
*Verification Analyze
*Authoring
*Deep Fake/Frauds  
….
“LLM + Deep Memory”
-Understand Text
-Understand speech
-Understand images
-Understand “life”?
-Adaptable:True/False?
-Evolve/mutate: DNA?



DNNs and Their Potential

https://youtu.be/XiQkeWOFwmk?t=6 

Tesla AI bot

Solves previously unsolved problems
• Code, text and image generation, and GPT-4 even passed 

the bar exam in the 90th percentile
• Protein folding

Increasing adoption in many different applications

Huge potential
• Requires little domain expertise
• NNs are a “universal approximation function”
• If you make it big enough and train it long enough

• Can outperform humans and existing algorithms on 
specific tasks
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Pervasive AI

Adapted from TED Talk: Andrew Ng “How AI could empower any business”

ChatGPT
Web Search

Recommenders

HEAD                                                                                                       LONG TAIL

Communications, medical, aerospace, IoT, sensor intelligence
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Broad spectrum of applications



Pervasive AI Comes with Diverse Requirements

Performance
(throughput, latency, jitter)

Power

Cost
Real estate

AccuracyIO
Requirements

Temperature
Ranges

Functional 
Safety …
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Examples of Diverse Requirements

• IoT/Embedded

• Small resource footprint, low power (<10W), low latency (msec), and zero jitter 

• High-Frequency Trading

• High-frequency trading (HFT) is an arms race of acquiring data and executing trading decisions fastest 

• Multimillion-dollar advantages through nanosecond differences

• Extreme low latency requirements (nsec) as DNNs are being adopted for better trading decisions

• High-Energy Particle Physics

• CERN CMS Experiment needs nsec latency for setting recording trigger

• Incoming data needs to be processed at 7 Tbps

• Extreme latency requirements (nsec)

8



Sustainability & Energy Consumption

• Energy footprint on par with whole industrial nations

• Current DNN algorithms represent a sledgehammer approach

• Extremely inefficient

20Watts
Scope for Improvement: 

Estimated 10^5
100s kilo Watts
matrix multiply

*TWh = Tera Watt hours

The carbon footprint of ChatGPT. An estimate of the carbon emissions… | by Chris Pointon | Dec, 2022 | Medium
https://www.semianalysis.com/p/meta-discusses-ai-hardware-and-co
Germany - Energy consumption in Germany (worlddata.info)
Ireland - Energy consumption in Ireland (worlddata.info)
**Yu Wang, Tsinghua University, Feb 2016 https://www.numenta.com/blog/2022/05/24/ai-is-harming-our-planet/9

ChatGPT
4.3 GWh*

Meta AI cluster
53-561 TWh*

Ireland
26 TWh*

Germany
537 TWh*=



Paradigm Will Shift towards Energy Efficient AI

Basics 2012 Scale-up and out 2022 Energy Efficiency

• Energy will become the limiting factor for scaling NNs
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Solution Specialization
Classical Hardware Accelerator Design Process (Waterfall)

Application
analysis

Architectural
specification

RTL 
Design & Test

Physical Design

Software &
Compiler Design

Test & 
Maintenance

Original Development Time (e.g., 18 months + 18 months)

Specialized Solution

Software takes 
50% time!*

*Source: Chip Design and Manufacturing Cost under Different Process Nodes: Data... | 
Download Scientific Diagram (researchgate.net)11

https://www.researchgate.net/figure/Chip-Design-and-Manufacturing-Cost-under-Different-Process-Nodes-Data-Source-from-IBS_fig1_340843129
https://www.researchgate.net/figure/Chip-Design-and-Manufacturing-Cost-under-Different-Process-Nodes-Data-Source-from-IBS_fig1_340843129


Challenges in a Nutshell
Dynamic, Diverse & Highly Customized

Customization
Hardware specialization 

with 
long development cycles

Dynamic & diverse
Agility and

Fast turn-around times

12

Agility in Customization is King



Analyzing Application Requirements



AI Application General Processing Flow

 A typical abstraction of processing flow:

System 
pre-processing

Algorithm
pre-processing

Sensor 
output

DPU running NN 
model

Algorithm
post-processing

System 
post-processing

› Algorithm-level processing

» Data normalization before sending to DPU

» Post processing (e.g. bounding boxes decoding in detection)

› Additional system-level workloads for AI inference

» Color conversion / resizing

» Path planning / control / status update



Typical Signal Processing Scenarios

Data Input Capture Data OutputPrepare
Digital 
Signal 

Processing
Arrange Distribute

Processing Time Budget

Decomposing a DSP Algorithm
Key requirements:
• Operators
• Datatype
• Data flow: Balanced/Reduction/Expansion(interpolation etc.)
• Bandwidth (Storage/Pipeline/Distribution)
• Time Budget (Data rate/Processing time/Latency)



Representative DSP / AI Engine Algorithms

Linear Algebra
Matrix-Matrix Multiplication

Matrix-Vector Multiplication

Convolution
FIR Filters

2-D Filters

Transforms
Fast Fourier Transforms (FFTs/iFFTs)

Discrete Cosine Transforms (DCT)



Processing Time Budget

< 1µs 10 µs 100 µs 1 ms 10 ms 100 ms 1 s minutes  - hours

Wireless Radio

Automotive ADAS

Image/Video Apps

D&A Radar

Wireless Baseband

Automotive Network, Sensor& Accuator Equipment



Enabling the Evolution of CV to AI
Traditional CV

Forward Cam AI

Surround View

Surround View Surround View AI



Classification

• Inception

• Mobilenet

• Resnet

• VGG

• EfficientNet

Typical Open AI Model support

Detection Segmentation

Example ADAS AI Model Support

• MLPerf ResNet50

• OFA ResNet

• Vision Transformer

• Car Type classification

• Car Color classification

• ssd_mobilenet

• Yolov3 

• Yolov4

• YoloX

• Refinedet

• Multi-taskv3

• EfficientDet

• Pointpillars

• Centerpoint

• CLOCs

• Pointpainting

• OFA-Yolo

• ENet

• Semantic FPN 

• Salsanext

• Salsanextv2

• SOLO

• HardNet

• Mobilenetv2

• 2D-Unet

• FPN-ResNet18

• Unet-Chaos-CT

• Sa-Gate



Enabling Rapid Specialization with Adaptive Compute Fabrics and AI Stacks 

Adaptive compute fabrics 

Customizable hardware execution architectures

AI stack

20

Brevitas



Convolutional Neural Network (CNN)
• A sequence of convolutional layers (+ pooling) extracts a feature map.

• The final feature map is fed to classifier (fully-connected layer) to guess 

a class. 



What are adaptive compute fabrics?
FPGAs and AIEs

22

Adaptive compute fabrics 

Customizable hardware execution 
architectures

AI stack



• FPGAs are the chameleon amongst the semiconductors: flexible, adaptive mostly homogeneous 
hardware architectures that enable post-production customization at the architectural level

• Customize

• IO interfaces

• Functionality post-silicon (compression, encryption, NN accelerator, key value store,…)

• Compute architectures & memory subsystems to meet specific use case’s performance or energy targets

Primer: Adaptive Computing – FPGAs

Sea of programmable Lookup Tables (LUTs) ~millions

Programmable Interconnect

DSPs: n-bit MAC

Embedded SRAM ~high bandwidth

Programmable IO

1

23

FPGAs are flexible and provide the ability to specialize 
hardware architecture post-production.



M
e

m
o

ry

AI

Core

M
e

m
o

ry

AI 

Core

M
e

m
o

ry

AI

Core

M
e

m
o

ry

AI

Core

M
e

m
o

ry

AI

Core

M
e

m
o

ry

AI

Core

M
e

m
o

ry

AI

Core

M
e

m
o

ry
AI

Core

M
e

m
o

ry

AI

Core

• AI Engines (AIEs): new form of higher performant, adaptive compute fabric

• Higher performance through hardened vector processing in VLIW cores, just word-based (instead of bit-based) with native 
support for ML-optimized data types (e.g., INT8, block float,…)

• Great flexibility because of interconnectivity and separate control flow 

     => adapt the execution architecture to different workloads

Primer: Adaptive Computing – AIEs

1
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Matrix of VLIW/SIMD vector processors (10s...100x)

Tightly coupled, embedded memory (1..10s MB)

AIE are software compiled and don't require synthesis

Flexible interconnect



AI Model mapping into AIE
High Performance, Energy Efficient, Customizable for AI Workloads 

                                                                                                                   Tensor Broadcasting in AIE Array:

                                                        * Use Case: Mapping CNN to AIE Tile:



Key Concepts

Customized for
specific topologies

Customized in 
data types

Sparse neural 
circuits

SparsityQuantization
Custom 

Dataflow

26



Dataflow - Specializing for Individual Topologies

• Hardware instantiates the topology as a dataflow 
architecture

• Customize everything to the specifics of the given DNN, its 
operations and connectivity

• Benefits: energy efficiency, latency and throughput scalability

DOG  CAT  CAT  DOG

FPGA/AIE

DNN

allocated resource ~ 

compute requirement

per layer

27



Dataflow - Energy Efficiency

• Architecture only computes and stores what’s 
needed in the specific use case

• Customized memory and compute subsystem

• Minimizes movement & storing of data 
• Activations are not buffered externally; they are in SRAM and 

registers moved directly from one layer to next

• High efficiency through concurrent 
communication and compute

• Each layer starts computing as soon as first inputs are available

• Shortens execution time => energy saving (𝐸 = 𝑃 ∗  𝑡𝑖𝑚𝑒)
Jouppi, Norman P., et al. "Ten lessons from three 
generations shaped Google’s TPUv4i: ISCA’2021.

28



Dataflow - Adapt and Scale to Diverse Workloads

1M inf/sec
@ 10k LUT

100M  inf/sec
@ 1M LUT

100k inf/sec
@ 1k LUT

Function
D

Function
C

Function
B

Function
A

allocated resource ~ 

compute requirement

per function C

D

inf/sec*Dataflow can scale performance & resources to meet diverse 
requirements

Without batching!
29

A B

*Inf/sec: inferences/second



Key Concepts

Customized for
specific Topologies

Customized in 
data types

Sparse neural 
circuits

SparsityQuantization
Custom 

Dataflow

30

Customizing Arithmetic to Minimum Precision



Quantization

• Reducing precision shrinks hardware cost/scales performance

• For integer datatypes, LUT cost proportional to bitwidths in weight 
and activations (e.g., INT1 : INT8: 70x)

• Instantiate n-times more compute within the same fabric, thereby 
scale performance n-times or shrinks hardware cost

• Energy

• Faster execution => less energy (𝐸 = 𝑃 ∗  𝑡𝑖𝑚𝑒)

• Using reduced precision operators saves energy

• Reduces memory footprint 
• ResNet50 @ 32b: 102.5 MB, ResNet50 @ 2: 6.4 MB

• NN model can stay on-chip => no external memory access => saves energy

Jouppi, Norman P., et al. "Ten lessons from 
three generations shaped google’s tpuv4i: ISCA’2021.

31
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1b

8b

32b



Low precision perception 
(Convolutional Neural Network with INT4 Optimization on Xilinx Devices, WP521 (v1.0.1) June 24, 2020)



Key Concepts

Customized for
specific Topologies

Customized in 
data types

Sparse neural 
circuits

SparsityQuantization
Custom 

Dataflow

33



• DNNs are naturally sparse

• Massive scope to improve ML efficiency through 
sparsity

• The human brain is highly sparse (98%) & operates on the 
power of a light bulb (~20W)*

• Sparse topologies result in irregular compute patterns 
which are difficult to accelerate on vector- or matrix-
based execution units

• Poor efficiency

• With streaming dataflow architectures, where every 
neuron and synapse is represented in the hardware, 
we can maximize efficiency

FPGA Optimized 

Dataflow 

on FPGA

34

Sparsity – Energy Efficiency



Sparsity – Extreme Codesign with FINN LUT mapping -> LogicNets

• Idea

• A LUT in an FPGA can represent a neuron

• Design a highly sparse circuit in an FPGA

• Represent this as a DNN to the training framework 

• Learn the LUT contents

6:1 FPGA LUT

*https://www.numenta.com/blog/2022/05/24/ai-is-harming-our-planet/
Umuroglu, Yaman, et al. "LogicNets: co-designed neural networks and circuits for extreme-throughput applications." FPL’2020.

Design a circuit 

(=unrolled DNN)

Train

Deploy

Adjust the parameters of DNN 

(=LUT contents) while iterating on 

training dataset until accuracy

High-efficiency and maximum performance by 
design (classification at clock rate)
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Example:             & Brevitas

Training tool
Brevitas

Hardware generator

FINN Compiler

Integrate generated IP 
into a larger design

Vivado/Vitis

 End-to-end flow – from DNN to bitstream 

 Enables generation of highly customized hardware architectures using 
quantization and dataflow and fine-granular sparsity

 Components

 Training tool: Brevitas

 Hardware generator (FINN)

 Kernel library (HLS)

 Open-source 

 Easy collaboration with customers

 Flexibility to adapt to fast-moving application space

 Third-party contributions

HLS Library



Others
(ZenDNN, MIGraphX…)

Brevitas - PyTorch Library 
Offering Agile Quantization Support 

• First class support for custom data types and 
operators at ML framework level

• Arbitrary precision integer, float, block-style 
quantization

• Extendible to user-defined datatypes and operators 
and support for any hardware-specific datatype at 
training

• Composable building blocks at multiple 
abstraction levels that can be arbitrarily combined 

• Integration with different compiler stacks

• Exports commonly used representation format (for 
example ONNX)

Quantization-
aware (re)training 

Export to inference toolchain 

Quantized Layers

Quantization building blocks

Calibration-based 
quantization 

Data-free 
quantization

Brevitas

37

FINN



FINN Compiler

Hardware Generator

FINN Compiler

INT description of the DNN• Modular graph compiler with well-defined 
abstraction levels

• Incrementally lowers ONNX graph to a hardware 
description through transformations

• Performs optimizations

• Layer fusion

• Explores the design space

• Calculates the degrees of  parallelism for each 
kernel using resource cost and performance models

• Code-generates a dataflow C++ description using 
the parameterizable kernel library

• Creates DNN hardware IP

Brevitas

Integrate generated IP 
into a larger design

Vivado / Vitis
hls::stream<ap_int<185>> in

hls::stream<ap_int<100>> inter0, inter1, ...

...

StreamingFCLayer<BINARY, BINARY, ..>(in, inter0, ...)

StreamingFCLayer<BINARY, BINARY, ..>(inter0, inter1, ..)

...

38



Some Example Results

39



Energy Efficiency through Quantization and Sparsity

Pruning

*QuTiBench (rcl-lab.github.io)
http://www.tara.tcd.ie/handle/2262/96391

Significant energy efficiency through pruning and quantization on FPGAs possible

• Benchmarking activity* across topologies, devices, and optimization schemes
• Example representing typical behavior: one MLP and one CNV, using quantization & pruning on an FPGA (FINN)

Quantization
Quantization: 3.4x Quantization: 5.5x

Pruning: 74xPruning: 49x

40

Summarized 
measurements 
over stream 
sizes

https://rcl-lab.github.io/QutibenchWeb/


0

0,1

0,2

0,3

0,4

0,5

INT2 FINN LogicNets

Energy per Inference [uJoules] without MPE

Energy Efficiency: FINN & LogicNets ( One bit LUT - FINN)
Results Demonstrate the Potential

Reducing precision & Dataflow => 
1272 improvement

LogicNets: 3.6x over FINN
3.6x

Energy calculated as inference time * power consumption ZCU104
LogicNets assumes equivalent power to DFTotal: ~4500x Energy Improvement through Post-Silicon Hardware Specialization

Much more work coming...

Details:
Network Security Application
Malware Classifier
UNSW dataset
MLP 92k Ops/inference
INT8 with VitisAI, 
INT2 with Brevitas and FINN
Board power ZCU104

LogicNets

0

100

200

300

400

500

600

INT8 DPU INT2 FINN LogicNets

Energy per Inference [uJoules]

1272x
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Cyber Security – Line-rate Classification with Nanosecond Latency

• FINN implementation of UNSW-NB15 malware classifier

• 2b weights & activations

• 91.9% accuracy

• 300M inferences/sec with 18 nsec latency

• 8k LUT

• FINN implementation of DDoS classifier trained on CIC-IDS2017 dataset

• 2b weights & activations

• 85% F1-score (binary classification using flow-based per-packet features)

• 19.2M inferences/sec, 52nsec latency

• 18.6K LUTs

Network 

Interface

L1-L3

Traffic Classification

(Malware detection)

Network 

Interface

L1-L3

Packet Buffer

Packet

Processing

Packet

Filter

42

Work in progress: 
Expected to scale to 300M 
inferences/sec too …



Diversity
LogicNets Results – Tiny (!!!) and Fast

• DNN in similar area compared to an FPGA 
32b adder

• High-energy particle physics CERN L1 trigger 
experiment
• Inference rate:    666M inferences/sec*    

• Latency:               3 nsec                                

• Resources:          30 LUTs

A Complete Neural Network @ 70% Accuracy!

Jet substructure classification (JSC)
16-input, 5-output classification problem

Synthesized with Vivado 2019.2; FMax equals inference rate
*max device frequency43



Diversity
LogicNets Results

• Quotation from Petersen et al., Dec 2022 @ NeurIPS: 

• “FINN […] the fastest method for classifying MNIST at an accuracy of 98.4%,”*

Synthesized with Vivado 2019.2; FMax equals inference rate
*Petersen et al. "Deep Differentiable Logic Gate Networks." NeurIPS, 2022.

Acc. [%] LUT Latency [nsec] Inferences/sec

LogicNets-M 97.7 45k 38 517M

LogicNets-S 95.8 12k 9 458M

44

Acc. [%] LUT Latency [nsec] Inferences/sec

98.4 83k 2,440 1.6M

95.8 91k 310 12.4M

323x
37x

64x
34x

2x
8x

“World’s fastest MNIST classifier”* - now even faster



FINN: Diverse Engagements and Open-Source Adoption

https://xilinx.github.io/finn

https://github.com/Xilinx/brevitas
45

• Communications
• Medical
• Sensor Intelligence
• Automotive 
• High-energy particle physics
• Aerospace & Defense
• High-frequency Trading

• Open-source Adoption
• ~2000 stars, 230k+ Brevitas 

downloads, 72k+ QONNX, 
17k+ FINN compiler 
downloads

• Three best paper awards
• > 1000 citations

Available: Customer support through AMD CSE organization

https://xilinx.github.io/finn
https://github.com/Xilinx/brevitas


Speed-up and automate specialization through graph compilers such as FINN and training libraries Brevitas

Pervasive AI: dynamic and diverse long tail of AI applications

Summary

Adaptive computing available in great diversity and can help by customization of hardware execution 
architectures
• Dataflow, shrinking precision, fine granular sparsity

Proof points from FINN, Brevitas and LogicNets demonstrate the potential for energy savings, and addressing 
truly diverse requirements

*Petersen et al. "Deep Differentiable Logic Gate Networks." NeurIPS, 2022.

Paradigm shift towards energy efficiency 

Enabling Rapid Specialization with Adaptive Compute Fabrics, Customized Execution Architectures and Agile AI 
Stacks 

46





Abstract

• In the context of AI, we face a plethora of challenges that extend beyond the widely discussed 
performance scalability required to meet the growing demands of compute and storage in the latest 
models. These challenges encompass sustainability, pervasiveness, agility, and diversity, all of which 
are needed to cater to a constantly evolving range of applications and algorithms from endpoint to 
edge and cloud. In this talk, we explore how AMD adaptive devices and agile compiler stacks can 
provide solutions by delivering post-production hardware specialization and co-designed algorithms. 
This results in highly optimized AI systems which not only provide the necessary performance 
scalability but also bring a reduction in carbon footprint while addressing the needs of a broad range 
of diverse applications with the necessary agility.
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