CO Ilnaro

ttttttttttttttttttt

Faster Linux Kernel
Testing with Linaro’s
Open-Source Tools and
LKFT Automation

Anders Roxell
anders.roxell@linaro.org

Rlinaro” Arm Solutions at Lightspeed

Cl Systems for Linux Kernel Testing

Why Kernel Testing Still Sucks:

Clis fragmented

Testing setup are painful
Feedback takes too long
Reproducibility is hard

Many devs still don’t test enough

Dlinaro” Arm Solutions at Lightspeed

Problem we are trying to address

For developers:

e Testingis hard to fit into daily work
e Setup is slow and manual
e Feedback takes too long

For testing reliability:

e Limited access to broad test coverage
e Reproducibility is inconsistent

Rlinaro” Arm Solutions at Lightspeed

Linaro’s Open Source Projects with Testing Focus (1)

TuxMake

o CLItool to build test the Linux Kernel with multiple toolchains
TuxRun

o CLI tool for testing Linux on virtual devices, using curated Rootfs and Test Suites
TuxLAVA

o A CLItool to generate the LAVA Job definition easily with curated Rootfs and Test Suites
TuxSuite CLI

o CLI tool to submit builds/tests to TuxSuite Cloud Service
TuxTrigger

o A CLI tool to monitor remote tree and trigger a TuxSuite Plan on updates
Tuxpkg

o Release automation tool for Python projects, creates pypi, deb and rmp pkgs
TuxBake

o A CLI wrapper around bitbake tool to make it easier to build OE/Yocto

https://tuxmake.org/
https://tuxrun.org/
https://tuxlava.org/
https://docs.tuxsuite.com/
https://gitlab.com/Linaro/tuxtrigger/
https://gitlab.com/Linaro/tuxpkg
https://gitlab.com/Linaro/tuxbake

Rlinaro” Arm Solutions at Lightspeed

Linaro’s Open Source Projects with Testing Focus (2)

o |AVA

o Is ascheduler to schedule test jobs on physical and virtual hardware
e Test-definitions

o A set of testing scripts designed to work with LAVA and standalone

e SQUAD
o A Software Quality Dashboard, store’s all the test results and logs
e lavacli

o Isacommand line tool to interact with one or many LAVA instances using XML-RPC
e SQUAD Client

o s atool for accessing data from a SQUAD instance through its API. The main purpose of this
tool is to ease report customization

https://docs.lavasoftware.org/lava/
https://github.com/Linaro/test-definitions/
https://gitlab.com/Linaro/squad/squad
https://docs.lavasoftware.org/lavacli/
https://gitlab.com/Linaro/squad/squad-client

Rlinaro” Arm Solutions at Lightspeed

LKFT (Linux Kernel Functional Testing) LiInux Stats - 2024

LTS Releases: 271
Regressions: 116
Total Tests: 204,487,984

Kernel triggers: 1,229
o Builds: ~400 builds, ~2500 boots
Builds: ~430k

Boots: ~3,000k

https://stats.lkft.linaro.org/

https://stats.lkft.linaro.org/

Dlinaro” Arm Solutions at Lightspeed

What is a TuxSuite Plan?

e AYamlfile describing a combination of builds and tests.
e Aplan could be made of
o standalone builds
standalone tests
set of builds and set of tests to be run for each build
combination of all the above

o O O

Simple plan

cription:

armbs4
{toolchain: gcc-13, target_arch:
gemu-armbé4, tests:

armés,
[ltp-smoke]}

davica
{ue‘u 1C¢e.

Build and test linux kernel on arm64 with gcc-13

kconfig: [defconfig]}

Dlinaro” Arm Solutions at Lightspeed

LKFT GitLab Component

TuxSuite
Cloud

& GitLab

TuxSuite (Build Kernel with
TuxMake) and run tests with

2000
5 (TuxRun, TuxLAVA)

Qu"Bild Kernel
(TuxMake) and Run
tests (TuxRun)

Dlinaro” Arm Solutions at Lightspeed

LFKT as a Service Component

Introduction

LKFT as a Service Component facilitates a complete CI/CD pipeline specifically for building and testing the Linux Kernel tree on
QEMU environments. This component is part of the larger LKFT as a Service with TuxSuite ecosystem, provided by Linaro, which
supports Linux kernel development with a suite of tools and services.

Getting Started

Prerequisites

« A Linux Kernel tree hosted on a gitlab instance.
+ Access to modify CI/CD settings in your Git repository.

Configuration
1. Integrate with your CI/CD pipeline:

To use the LKFT as a Service Component with your Linux kernel project, add the reference kernel pipeline YAML file to your
project. This can be done by setting the CI/CD configuration in your project settings(Settings -> CI/CD -> "CI/CD
configuration file"):

.gitlab-ci-kernel.yml@Linaro/components/1kft

Reference YAML file: .gitlab-ci-kernel.yml

Set the timeout value for the pipeline to 6h since some builds and test run for longer duration. The timeout needs to be
adjusted if the jobs timeout. This can be done by setting the CI/CD configuration in your project settings(Settings -> CI/CD ->
General Pipelines -> Timeout)

https://gitlab.com/Linaro/components/Ikft

https://gitlab.com/Linaro/components/lkft

Rlinaro” Arm Solutions at Lightspeed

LKFT Gitlab Component Features

e This is the easiest way to plug into LKFT’s testing power

e Default Plan builds and boot test

o Latest toolchain gcc-(11/12/13) available for the architecture
O QEMU - arm, arm64, x86_64, i386, riscv, mips, sh, s390x, ppc, sparc64

e RockPi4 example
o You can override the plan via Git push options. No YAML edits needed — just a git push -o

$ git push -o
ci.variable="PLAN=https://people.linaro.org/~anders.roxell/demo-plans/rockpi4-preempt-rt.yaml"
-f origin hw

e LKFT Local Execution
e LKFT Cloud Execution

Dlinaro” Arm Solutions at Lightspeed

Local vs Cloud Execution

Feature Native TuxSuite Execution TuxSuite Cloud
Test Sharding
Specify test Fragments in plans
Petition for new test workloads
Target tests on real remote-lab hardware X
FVP test targets X
Reproducer fragments X
True Parallelization of builds and tests X
Email summary/Report for a Plan X

Dlinaro” Arm Solutions at Lightspeed

Cloud Execution

and obviously: scalability!

Dlinaro” Arm Solutions at Lightspeed

Bisecting locally with ‘tuxsuite plan execute’

'sion:

Simple plan
ription: Build and test linux kernel on armé4 with gcc-13

chain: gcc-13, target_arch: arm64, kconfig: [defconfig]}
e: gemu-armé4, tests: [ltp-smoke]}

$ cd /path/to/kernel-tree

$ git bisect start <bad sha> <good sha> && git bisect run tuxsuite plan execute
--job-name arm64 ~/src/components/lkft/templates/boot/plan.yml

More information: How to bisect with tux tools

https://gitlab.com/Linaro/lkft/how-to-bisect-with-tux-tools

Dlinaro” Arm Solutions at Lightspeed

Bisecting with TuxMake & TuxRun

e Bisect with it

$ git bisect start <bad sha> <good sha> \
&& git bisect run tuxmake --runtime podman \

--target-arch armé4 --toolchain gcc-13 --kconfig defconfig \
--results-hook 'tuxrun --runtime podman --gemu-armé4 \
--tuxmake ./ --save-outputs --log-file - --tests ltp-smoke’

More information: How to bisect with tux tools

https://gitlab.com/Linaro/lkft/how-to-bisect-with-tux-tools

Rlinaro” Arm Solutions at Lightspeed

Time For Lunch!

Want to dig deeper into any of the tools, workflows, or LKFT?
Let’s chat after the talk or drop me a line.

Anders Roxell
anders.roxell@linaro.org

mailto:anders.roxell@linaro.org

