
Embedded Development
Made Easy

A Guide to Open Source Platforms and Maximizing value for
your product

Bassem Nomany
bassem.nomany@exodo.engineering

About me

- System architect with 13 years of experience in embedded systems, IoT, and
software-defined products.

- Worked across industries: automotive infotainment, electric mobility and smart
connected devices.

- Worked extensively with open source and commercial embedded platforms.

- Freelancer working to help OEMs develop secure, software-defined products
with open source platforms at the core.

What this talk is about

- Engineering is balancing act to trade-off time to deliver
features, lowest cost, and best quality.

- Modern software is rich in features and comes with high
expectations.

- Embedded platforms act as backbone to integrate and
manage, contain or encapsulate complexity.

This presentation is high level guide for:

● Makers who want to launch a product.
● Startups trying to get started.
● OEMs buried in complexity.
● Anyone feeling stuck between vendor lock-in.

RTOS or full-fledged operating system?

Application Processor or MCU?

What’s the best embedded ecosystem that FOSS can offer my project?

That’s today’s topic …

Both platforms offer:

● Layered architecture, and standard services APIs.
● Hardware abstractions that facilitates swapping hardware or building for

different hardware variants.
● A hardware variant can be different product hardware generation, or

different market segment hardware, or simulation.
● Wide variety of peripherals and boards already offer reference

integration.
● Portability: Write once, deploy on multiple devices with minimal changes
● Unified sensor and driver integration via standard interfaces
● Cover a range of functionalities: Basic I/O, sensor interfacing,

networking, etc.

FOSS platforms scales across devices types

FOSS platforms scales across devices types

Traditionally, the split between MCU world and APU world has been clear cut.
Nowadays, Compute offering is more of a spectrum where you try to place your product on the spectrum based on
requirements and specifications.
One can over spec, or under spec depending on the use cases and maturity of requirements.

High performance MCUs or Crossovers MCUs can offer acceleration for:
● 2.5D Graphics
● Camera Interface
● Multi-channel I2S audio

There’s boards that can offer both compute types and run different compute based on the use case to get benefits of both
worlds.

Typical case of each compute type:
● Low Power example: Battery powered devices, smart tags, Low power wireless communication devices for IoT can

run software based rendering too.
● Crossovers MCUs: Two wheelers, like Motorcycles, Instrument clusters for cars, Smart home with displays
● APUs: Can be found in complex functions like infotainment, Home Theaters, Application based, Navigation systems.
● One can run even Zephyr or Linux, or Zephyr and Linux sametime using Hypervisor on APUs

Yocto - Zephyr similarities and differences (1 / 3)

- Yocto Linux is build system used to create
custom Linux distributions for embedded
systems on more powerful processors.

- Example: MPUs (ARM Cortex-A, x86, etc.)
- Smallest unit of software are contained in

recipes.
- A collection of logically grouped recipes are

contained in a layer.
- A manifest specifies which layers to fetch to

build the distro.
- Uses repo tool to fetch the layers.
- Uses bitbake to build and test images.

- Zephyr RTOS focus on resource
constrained devices, with tighter
requirements around real time.

- Example: MCUs (ARM Cortex-M)
- Buildable software is organized into modules

which have its own git repository.
- Relies on a manifest to fetch modules into

sources directory
- Uses west tool to fetch sources for all the

modules
- Uses west tool to build, flash, debug and

test images

Yocto - Zephyr similarities and differences (2 / 3)

- Both platforms are highly customizable in terms of:
- Sources to fetch from remote repositories.
- Selecting out of the box or custom boards BSP.
- Both are open-source projects with strong community and corporate backing.
- Actively maintained with frequent releases and broad contributor bases.
- Configured in similar ways:

- Devicetree for describing hardware nodes and peripherals attached or
living on the board

- Kconfig (guiconfig)to describe what modules to include in the zephyr
image, or Linux Kernel

Tailor and
Configure

Yocto - Zephyr similarities and differences (3 / 3)

- Linux organizes logical software
functions in various processes,
which runs in separate memory
spaces.

- Relies on Systemd as init process to
start the image processes units in
defined sequence called boot targets.

- A crashing userspace process
would mean high chance of recovery
if systemd was instructed to restart on
failure.

- Linux Rootfs boot time to full function
can take seconds.

- Zephyr RTOS organizes logical software
functions in different threads, which runs
in one monolith process.

- Threads can be created and started
from main function or K_THREAD_
macros.

- A crashing thread would mean crashing
entire OS and its application.

- Zephyr RTOS have impressive boot time,
typical hundred of milliseconds.

Runtime

Yocto - Zephyr similarities and differences (3 / 3)

The difference is between the Operating systems is how the features and complexity is
managed.

● Linux is a full-fledged general-purpose operating system with:
○ Memory management (MMU support)
○ User space and kernel space separation
○ Device drivers for a wide range of hardware
○ Multi-user and multi-process support
○ Filesystems, networking, security, etc.

● RTOS is minimal by design:
○ Tailored for specific hardware and use case
○ Focus on minimal necessary components (e.g., task scheduler, interrupt handling)
○ No user space/kernel space separation (monolithic)

Linux sophisticated architecture Impact: More code, more processes and more initialization
steps in Linux = longer boot time.

Modern expectations (1 / 7) - Software-defined products

- Manufacturers figured out a business model to subsidize the investment and spread
it over long period of time.

- Instead of allocating big capital for the product, they can sell MVP and use the
profits to fund the next set of feature to roll out and so on.

- Project capital investment is broken down on much longer time after product launch.
- This allows for:

- Lower the risk of capital investment without return on investment.
- Prove product demand and validate the market growth before investing in full

blown product with features users might not need or require.
- Products today are created in phases and have a feature rollout plans based

on core features, and extra features.
- Consumers can vote with their wallet and adoption

Modern expectations (1 / 7) - Software-defined products

- Launch MVP before building the whole solution
- Rollout, test features, monitor and adapt to user feedback and response
- Adapt to ever changing regulations and market competition landscape

● Decouple Software features and behavior from hardware functions
● A need for scalable platform for feature growth rollouts, easy to change and evolve
● Over the air updates to update the device behavior and functions

- Decoupling is done via HAL using BSP layers
- Offer service oriented architecture using IPCs like

dbus
- Offer Software packaging (rpm/deb) for

dependencies organization
- Offer FoTA solution with great integration for both

apps and full system image using u-boot and pkg
manager.

- Decoupling is done via HAL using board selection during west
build

- Offer service oriented architecture using threads bus communication
(zbus)

- Can offer Linkable Loadable Extensions (LLM) for adding/updating
features without rebooting.

- Offer FoTA solution with great integration for full system image using
MCUboot.

Modern expectations (2 / 7) - Continuous security & regulations

With EU Cyber Resilience Act (CRA) and RED (Radio Equipment Directive)
updates, the game is changing. Products must now:

- Stay secure throughout their entire lifecycle, and offer faster security
response.

- Bitbake can generate SBOMs in SPDX or
CycloneDX format using meta-security.

- meta-security layer enables CVE
tracking, vulnerability scanning, and
integration with:

- CVE database monitoring
- cve-check.bbclass to flag known

issues
- Tools like cve-bin-tool

- Zephyr can generate SPDX SBOMs automatically using
west build tools.

- The Zephyr project itself tracks CVEs.
- Security patches are regularly backported to LTS

releases.

Modern expectations (2 / 7) - Continuous security & regulations

- One-time reviews is not enough, vulnerabilities are typically found after software
has been shipped.

- SBOMs detail modules’ or components’ versions used
- CVE scanners and checkers uses SBoMs to create updated CVEs list and

generate reports along with known fixes.
- Your project dependency tree must be visible and traceable.
- Both Zephyr and Yocto projects can generate SBOMs as build artifact and

maintain them over time.

Both platforms offer security Guidelines for creating secure solutions:
- Secure boot via u-boot, or MCUboot, Secure storage.
- Protecting data at rest, and Data in transit.

Modern expectations (3 / 7) - Testing

- Automated testing via BitBake:
oe-selftest, ptest for functional and
regression testing

- So many unit testing frameworks
based on language and technology,
such as Google Test (gtest/gmock)

- Emulation testing via QEMU
- OTA testing integration with

Mender, SWUpdate
- Hardware-in-the-Loop (HIL) using CI

runners on Jenkins or Gitlab Runners.

- Automated testing via west: Twister Test
Runner for Unit, integration, driver, and
platform tests.

- Offers Ztest framework and Fake Function
Framework for unit and mocking testing.

- Emulation testing via QEMU & native_sim
- OTA testing integration with Mender

(Preview)
- Hardware-in-the-Loop (HIL) using CI runners

on Jenkins or Gitlab Runners.

Modern expectations (4 / 7) - CI/CD

There’s many offerings for Continuous Integration and deployment that can easily
setup with Jenkins pipeline, Gitlab CI, Github actions.

Build Instrumentation Wraps around BitBake (Yocto) or West (Zephyr) with
manifests for reproducible builds.

Simulation Testing: Run QEMU or native_sim in CI for early validation

Hardware Testing at Scale: Connected device farm for automated HIL regression

Modern expectations (4 / 7) - CI/CD

Automated CI/CD build can automate:

- SBoMs report
- CVE scanner tools and reports
- Sign the images
- Generate test reports
- Run simulation on a target
- Run real hardware in loop on a device farm of different hardware variants.
- Store the binaries and all artifacts in artifactory

Modern expectations (5 / 7) - IoT Connectivity

Lightweight M2M is more than just protocol, since it also offers a data model
register per device type, and Standard data and methods for handling:

- Device onboarding and configuration
- Commissioning/decommissioning
- Software updates
- Remote factory reset
- Collecting data logs and core dump files
- More efficient in terms of data and power consumption on resource

constrained
MQTT is widely adopted more than LWM2M and from cloud vendor compared to
LWM2M protocol.

Modern expectations (5 / 7) - IoT Connectivity

Device Onboarding & Configuration Built-in via LwM2M bootstrap & security objects Requires custom implementation — provisioning
must be built separately.

Commission/Decommission Devices LwM2M supports secure factory reset, bootstrap
& deregister flows

No standard mechanism — needs custom logic
for lifecycle management

Data Telemetry & Remote Control Read/Write/Observe model, supports CoAP
Notify

Publish/subscribe model, widely adopted

Remote Monitoring & Diagnostics Native object model for error codes, logs, crash
dumps.

Requires you to define and transmit diagnostic
topics manually.

Cloud Ecosystem Compatibility Cloud agnostic services: Eclipse Leshan, EMQX AWS IoT Core, Google Cloud IoT Core, Azure
IoT hub

Security DTLS (CoAP over UDP/TCP), supports PSK,
RPK, or X.509

TLS often used, but security design is
completely up to developer

Power & Network Efficiency Designed for constrained devices; supports
CoAP observe, block-wise transfers,
lifetime/delay intervals.

MQTT can be chatty unless optimized
(keep-alive tuning, retain flags, QoS, etc.)

Modern expectations (6 / 7) - Delightful user interfaces

● Frameworks Supports touch, animation, themes, and
fonts:

○ Zephyr RTOS: LVGL is already integrated into the Zephyr project
and samples are available.

○ Linux: Flutter/Dart or Qt/JS/C++ are great options for embedded,
reference integration is available via meta-qt6 and meta-flutter

● Display interfaces:
○ HDMI, MIPI-DSI, LVDS, RGB Parallel connector, SPI
○ USB or I2C for touch input data

 Modern expectations (7 / 7) - ML on edge devices

Why Edge ML?
- Real-time insights without cloud dependency
- Lower latency, improved privacy, reduced bandwidth
- Enables smarter products: from wearables to robots

 Modern expectations (7 / 7) - ML on edge devices

- Frameworks:
- TensorFlow
- ONNX Runtime
- PyTorch

- Object detection (YOLO,
MobileNet-SSD)

- Complex models depending on the
processing power and GPU or NPU
acceleration.

- Framework: TensorFlow Lite for
Microcontrollers (TFLM)

- Runs in < 100KB RAM (no heap allocation)
- Simple model types:

- Gesture recognition from accelerometer
- Keyword spotting / sound classification
- Vibration & sensor anomaly detection

Challenges and consideration

What questions should product creators ask before committing to
Silicon footprint, vendor and choosing between Linux or RTOS based
platforms?

Challenges and consideration (1 / 4) - Product requirements balancing act

What to consider when selecting MCU, APU or off the shelf board:

● Power consumption, Battery constrained?
● Compute required
● Thermal headroom or solution
● Memory required
● Peripherals availability
● Environmental rating
● Cost (BoM/SBoM)
- How many years will the device be in the market?
- What’s the future features forecast for how much footprint?

Should you over spec your silicon in terms of compute and
memory, so it can be future ready? Or should you save on
cost for affordable market segment?

Challenges and consideration (2 / 4) - Product lifecycle

● Planning product launch is exciting, Planning product end of life is
important too.

● Long-term ownership isn’t just a business advantage. it’s becoming a legal
necessity. Open source gives you the tools and freedom to own your
compliance roadmap, instead of outsourcing it to someone else’s timeline.

That translates to, before selecting a MCU, APU or a board, One has to question:

● LTS commitment from Silicon vendor and OS platform, for how many years?
10-15 years?

● Update release cadence commitment? What’s the update window between
new upstream release and SV updated BSP?

● What’s the CVE response time window for BSP?
● If SV doesn’t want to offer such LTS support, do they have binary blobs in

their BSP, are they willing to share sources for blobs?

Challenges and consideration (3 / 4) - Hardware delays

Custom hardware development often involves lead time delays, bringup effort,
driver integration, and testing in real environments.

- To kickstart the development early: Simulation, and similar EVKs can be used
until real production hardware is available.

- Both Bitbake and West support building for different board variants including
the production-ready board when it arrives.

Board bring up will be less effort if the chosen Silicon vendors offers a reference
integration in Zephyr for device trees and driver integration, or Yocto reference
image for their APU.

Challenges and consideration (4 / 4) - Cost of ownership

80% of a platform functionality is
non-differentiating (OS Kernel, Standard
middleware services), 20% is your competitive
edge (Your application business logic that adds
value to user).

- Yocto and Zephyr platforms lets you own the
20%, while reusing the 80% for free.

Long-Term vs short-term economic Incentives
for using FOSS vs Commercial

Challenges and consideration (4 / 4) - Cost of ownership

Long-Term vs short-term economic Incentives for using FOSS

- Greater investment up-front, lower long-term TCO
- No per-device royalties (big deal at scale)
- Requires skilled team or partners
- Higher effort for compliance with CRA/RED
- Transparent SBOMs, auditability, and easier patchability
- Avoid vendor lock-in, and have full control over the stack (hardware to cloud)

Short-Term, commercial solution might consume less cash flow and lower upfront costs, which
important to startup OEMs.

Long-Term, commercial solution is more expensive..

Depending on how much volume leverage and how big the contract with the commercial vendor,
commercial vendor might not prioritize long term security, maintenance and your features roadmap nor
change request. OEM might end up locked into roadmap & pace of vendor.

What Zephyr/Yocto Linux platform don’t provide out of the box, and additional
effort required for commercialization.

● Functional Safety FuSa process for safety-critical systems.
● Verification of your real-time (soft or hard) requirements.
● System security design and continuous security (That includes your

middleware and application components).
● Factory software download and provisioning secrets at the factory.
● Integration effort for tailoring the configuration and integration of platform

modules (communication protocol, cloud endpoint, FoTA, peripherals .. etc)

Summary and conclusion
- The FOSS ecosystem offering for creating

your next product is quite strong.

- On the right, FOSS projects of interest that
offers easy integration in Zephyr and Yocto.

- Selecting silicon Vendor that supports and
maintains reference integration with Yocto or
Zephyr will save you effort on board bring up
and will get you started immediately.

- For Zephyr: this awesome page to look for
boards and available peripheral support,
shields and samples.

- For Yocto: check the following silicon
vendors page.

Si
lic

on
 V

en
d

or
s 

STMicroelectronics 

O
p

er
a

ti
ng

 S
ys

te
m
 

C
lo

ud
 v

en
d

or
s 

G
ra

p
hi

ca
l U

se
r

In
te

rf
a

ce
 

NXP 

C
on

ti
nu

ou
s

In
te

g
ra

ti
on
 

Jenkins  CVE Checker 

Io
T

Pr
ot

oc
ol
 

Over the air 
Updates  GCP  AWS  Azure  EMQX 

Matter 

https://docs.zephyrproject.org/latest/boards/index.html#
https://docs.zephyrproject.org/latest/samples/index.html

Thanks for listening

Open Questions

