
Microcontrollers and
Machine Learning

with MicroPython and emlearn

https://github.com/emlearn/emlearn-micropython

Jon Nordby jononor@gmail.com
foss-north 2025

https://github.com/emlearn/emlearn-micropython
mailto:jononor@gmail.com

Goal
Purpose of this presentation

You, as a Python developer,
can build an IoT sensor
on a microcontroller
using MicroPython

+ Including
on-edge Machine Learning
with emlearn-micropython

Python on
Microcontroller Jumping right into it

What is a microcontroller?

Espressif ESP32-S3FH4R2 chip: 2.5 USD
Waveshare ESP32-S3-Tiny board: 6 USD

Modern microcontroller:
A complete programmable System-on-Chip

Example: ESP32-S3FH4R2

32 bit CPU, 240 Mhz
Floating Point Unit
2 MB RAM
4 MB FLASH

WiFi
Bluetooth Low Energy
USB-C

Hardware tinkering optional
- complete devices available

Complete ESP32 based device with sensors etc.: 20 - 50 USD

Installing MicroPython

Download prebuilt firmware
https://micropython.org/download/?port=esp32

Flash firmware to device
pip install esptool

esptool.py --chip esp32 --port … erase_flash
esptool.py --chip esp32 --port … write_flash -z 0 micropython-v1.17.bin

Connect to device
pip install mpremote
mpremote repl

IDE (optional): Viper IDE, Thonny, et.c.

https://micropython.org/download/?port=esp32

Temperature sensor - hardware

Example
MPU6886 accelerometer
built-in temperature sensor

Temperature Sensor
DS1820
Water-proof

Room Monitoring
+ CO2
+ humidity
+ temperature

Using https://viper-ide.org/

Zero-install. Connect to device via USB

1. Read the sensor in a loop

2. Send data using MQTT

3. Wait until next measurement

The same approach can be used for
sensing other slow changing phenomena

Using peterhinch/micropython-mqtt
and jonnor/micropython-mpu6886

Temperature sensor
- code

https://viper-ide.org/
https://github.com/peterhinch/micropython-mqtt/blob/master/mqtt_as/main.py
https://github.com/jonnor/micropython-mpu6886/

Installing packages

MicroPython has a package
manager “mip”

Directly on device!

ViperIDE supports install via UI

Custom packages via URL

Sensor nodes
with MicroPython What can be done on an ESP32

microcontroller with MicroPython
and how to make it work

Activity
tracker

Temperature
logger

Noise
monitor

Image
Classifier

Temperature
0.1 Hz

Accelerometer
100 Hz

Microphone
16000 Hz

Camera
27000 bytes/s

if is_MyCat(img):
 open_door()

Pure Python Python with C modulesFeasibility

Random Forest
classifier
emlearn_trees

Infinite Impulse
Response filters
emlearn_iir

Convolutional
Neural Network
emlearn_cnn

Sound
sensor

Sound sensor

I2S digital microphone
(Example wiring)

Soundlevel calculation
Processing steps

Complete hardware unit
LilyGo TTGO
T-Camera S3

Sound sensor - Install it

https://github.com/emlearn/emlearn-micropython/
tree/master/examples/soundlevel_iir

Rendering text/widgets to screen
https://github.com/peterhinch/
micropython-nano-gui

Microphone input
machine.I2S

https://github.com/emlearn/emlearn-micropython/tree/master/examples/soundlevel_iir
https://github.com/emlearn/emlearn-micropython/tree/master/examples/soundlevel_iir
https://github.com/peterhinch/micropython-nano-gui
https://github.com/peterhinch/micropython-nano-gui

Audio filters
using emlearn_iir
Standard sound level measurements are
A-weighted. To approximate human hearing.

Implemented using
Infinite Impulse Response (IIR) filters.

Must be computed within 125 ms

Python implementation
1100 ms 900% CPU

emlearn_iir C module
30 ms 20% CPU

C modules

Written in C.
Defines a Python module with API.
functions/classes et.c.

Can be implemented by users,
libraries or be part of MicroPython
core.

Can be portable or specific to one
hardware/platform

Native module (.mpy) VS External C module

Native module External C module

Installable at runtime Yes, as .mpy file No. Must be included in
firmware image

Requires SDK/toolchain No (only to build) Yes

Code executes from RAM FLASH

Limitations No libc / libm linked *
No static BSS *

None

Maturity Low * Excellent

Documentation https://docs.micropython.org/
en/latest/develop/natmod.html

https://docs.micropython.org/
en/latest/develop/cmodules.html

* Improved greatly in upcoming MicroPython (1.25+).
Contributions by Volodymyr Shymanskyy, Alessandro Gatti, Damien George, and others

https://docs.micropython.org/en/latest/develop/natmod.html
https://docs.micropython.org/en/latest/develop/natmod.html
https://docs.micropython.org/en/latest/develop/cmodules.html
https://docs.micropython.org/en/latest/develop/cmodules.html

Activity tracker

Activity tracker - concept

Complete
hardware unit
LilyGo
T-Watch S3

I2C MEMS IMU
accelerometer/gyro
(Example wiring)

Recording a dataset

3 separate series,
1 minute per activity

Saves 10 sec .npy files

Transfer over USB

Cleaned labels in
Label Studio

har_record.py
https://github.com/emlearn/emlearn-micropython/tree/master/examples/har_trees

“Other”

Jumping
Jacks

https://github.com/emlearn/emlearn-micropython/tree/master/examples/har_trees

ML on streams: Continuous classification

The sensor data stream
is sliced into overlapping windows.
Each window processed independently

Exercise activity detection:
- 4 second window, every 1 second
- 100 Hz samplerate
- Processing time 200 ms

Raw sensor data Features ClassPreprocess Model

Implementing an IMU/accelerometer/gyro driver? Use the FIFO!
https://github.com/orgs/micropython/discussions/15512

[42, 4002, … , 329] “Jumping Jacks”

https://github.com/orgs/micropython/discussions/15512

Activity Tracker - Feature Extraction

Statistical summarizations are useful time-series features,
sufficient for basic Human Activity Recognition.

https://github.com/emlearn/emlearn-micropython
/blob/master/examples/har_trees/timebased.py

Time-based features extraction
Are Microcontrollers Ready for Deep
Learning-Based Human Activity Recognition?
Atis Elsts, and Ryan McConville
https://www.mdpi.com/2079-9292/10/21/2640

! Preprocessing must be compatible
between training on host PC (CPython) and device (MicroPython)

Solution: Write preprocessor for MicroPython, re-use in Python

 subprocess(‘micropython preprocess.py data.npy features.npy’)

Alternative: (when using common MicroPython/CPython subset)

 import mypreprocessor.py

Using micropython-npyfile to read/write Numpy .npy files
https://github.com/jonnor/micropython-npyfile/

https://github.com/emlearn/emlearn-micropython/blob/master/examples/har_trees/timebased.py
https://github.com/emlearn/emlearn-micropython/blob/master/examples/har_trees/timebased.py
https://www.mdpi.com/2079-9292/10/21/2640
https://github.com/jonnor/micropython-npyfile/

Training model on dataset

Using a scikit-learn based pipeline.

Setup subject-based cross validation
splitter = GroupShuffleSplit(n_splits=n_splits, test_size=0.25,
 random_state=random_state)

Random Forest classifier
clf = RandomForestClassifier(random_state = random_state,
 n_jobs=1, class_weight = "balanced")

Hyper-parameter search
search = GridSearchCV(clf, param_grid=hyperparameters,
 scoring=metric, refit=metric, cv=splitter)
search.fit(X, Y, groups=groups)

import emlearn
converted = emlearn.convert(clf)
converted.save(name='gesture', format=’csv’, file='model.csv')

har_train.py

Deploying trained model

Copy model to device

mpremote fs cp gesture_model.csv :

Performance comparison
10 trees, max 100 leaf nodes, “digits” dataset

 Inference time Program space

m2cgen 60.1 ms 179 kB
everywhereml 17.7 ms 154 kB
emlearn 1.3 ms 15 kB

emlearn is 10x faster and 10x more space efficient
compared to generating Python code

Load and run on device

emlearn
for C

Embedded Friendly

● Portable C99 code
● No dynamic allocations
● Header-only
● High test coverage
● Integer/fixed-point math *
● Small. 2 kB+ FLASH

from sklearn.neural_network import MLPClassifier
model = MLPClassifier(hidden_layer_sizes=(100,50,25))

model.fit(X_train, Y_train)

from keras import …

model = Sequential([
 Dense(16, input_dim=n_features, activation='relu'),
 Dense(8, activation='relu'),
 Dense(1, activation='sigmoid'),
])
model.compile(....)
model.fit(X_train, Y_train, epochs=1, batch_size=10)

Train and export a model

B) scikit-learn neural network

1. Train using standard Python ML libraries.

A) keras neural
network

import emlearn

cmodel = emlearn.convert(model, method='inline')

cmodel.save(file=mynet_model.h', name='mynet')

#include <eml_net.h>

static const float mynet_layer_0_biases[8] = { -0.015587f, -0.005395f, -0.010957f, 0.015883f ….
static const float mynet_layer_0_weights[24] = { -0.256981f, 0.041887f, 0.063659f, 0.011013f, …
static const float mynet_layer_1_biases[4] = { 0.001242f, 0.010440f, -0.005309f, -0.006540f };
static const float mynet_layer_1_weights[32] = { -0.577215f, -0.674633f, -0.376140f, 0.646900f, …
static float mynet_buf1[8];
static float mynet_buf2[8];
static const EmlNetLayer mynet_layers[2] = {
{ 8, 3, mynet_layer_0_weights, mynet_layer_0_biases, EmlNetActivationRelu },
{ 4, 8, mynet_layer_1_weights, mynet_layer_1_biases, EmlNetActivationSoftmax }
};
static EmlNet mynet = { 2, mynet_layers, mynet_buf1, mynet_buf2, 8 };

 int32_t
 mynet_predict(const float *features, int32_t n_features)
 {
 return eml_net_predict(&mynet, features, n_features);
 }
……… Example of generated code

2. Use emlearn.convert() and .save()

Using the C code
3. #include and call predict()

// Include the generated model code
#include "mynet_model.h"

// index for the class we are
detecting
#define MYNET_VOICE 1

// Buffers for input data
#define N_FEATURES 6
float features[N_FEATURES];

#define DATA_LENGTH 128
int16_t
sensor_data[DATA_LENGTH];

// Get data and pre-process it
read_microphone(sensor_data, DATA_LENGTH);
preprocess_data(sensor_data, features);

// Run the model
out = mynet_predict(features, N_FEATURES);

// Do something with results
if (out == MYNET_VOICE) {
 set_display("voice detected");
} else {
 set_display("");
}

loopsetup

Summary

Conclusions1. Modern microcontrollers are very accessible
Runs (Micro)Python!
ESP32 recommended
ViperIDE easy start

2. MicroPython productive environment for sensor devices
Python familiarity and ease-of-use
mip package manager
Good connectivity

3. Can implement advanced processing of sensor data
Accelerometer, audio, image, radar, ….
C modules a killer feature
emlearn-micropython: modules for DSP and Machine Learning

More resources
emlearn-micropython

emlearn_iir Infinite Impulse Response filters
emlearn_trees Random Forest
emlearn_fft Fast Fourier Transform
emlearn_cnn Convolutional Neural Networks Image classification+
emlearn_neighbors K-nearest Neighbors On-device learning

Ulab: Numpy implementation for MicroPython https://github.com/v923z/micropython-ulab

OpenMV: Computer/Machine Vision for MicroPython https://openmv.io/

PyCon Berlin 2024: Machine Learning on microcontrollers using MicroPython and emlearn
https://www.youtube.com/watch?v=S3GjLr0ZIE0
PyData ZA 2024: Sensor data processing on microcontrollers with MicroPython
https://za.pycon.org/talks/31-sensor-data-processing-on-microcontrollers-with-micropython/

https://github.com/v923z/micropython-ulab
https://openmv.io/
https://www.youtube.com/watch?v=S3GjLr0ZIE0
https://za.pycon.org/talks/31-sensor-data-processing-on-microcontrollers-with-micropython/

Microcontrollers and
Machine Learning

with MicroPython and emlearn

https://github.com/emlearn/emlearn-micropython

Jon Nordby jononor@gmail.com
foss-north 2025

https://github.com/emlearn/emlearn-micropython
mailto:jononor@gmail.com

Bonus

Model
optimization

https://emlearn.readthedocs.io/en/la
test/model_optimization.html

https://emlearn.readthedocs.io/en/la
test/tree_based_models.html

https://emlearn.readthedocs.io/en/latest/model_optimization.html
https://emlearn.readthedocs.io/en/latest/model_optimization.html
https://emlearn.readthedocs.io/en/latest/tree_based_models.html
https://emlearn.readthedocs.io/en/latest/tree_based_models.html

- Memory (RAM)
- Program space (FLASH)
- Inference time (CPU)
- Energy (battery)

Compute constraints
ML
pipeline

System/
Application

RAM
64 kB

Reserved

Model

Pre-processing

Post-processing

Sensor reading

Connectivity

User interface

Drivers

FLASH
512 kB

Model

Pre-processing

Post-processing

Sensor reading

Connectivity

User interface

Drivers

Reserved

Time
Energy

Send Sleep zzzzZZZ Send

Active time

Total time

CPU
Cortex M4F

Utilities for finding Pareto front in emlearn.evaluate.pareto
https://emlearn.readthedocs.io/en/latest/evaluate.html
Example: https://emlearn.readthedocs.io/en/latest/auto_examples/trees_hyperparameters.html

Pareto front - performance/compute tradeoffs

Many possible combinations of predictive
performance vs computational cost

No point considering the non-optimal solutions!

Pareto front is formed by the set of optimal
solutions - that dominate the non-optimal ones

Describes the possible tradeoffs between
predictive performance and compute

https://emlearn.readthedocs.io/en/latest/evaluate.html
https://emlearn.readthedocs.io/en/latest/auto_examples/trees_hyperparameters.html

No. features F [0]
No. trees T
Tree Depth D_max [1] / D_eff [2]
No. nodes N ≈ T * (2 ** D)

Computational costs

Memory (RAM) O(F)
Program (FLASH) O(N) [3]
Exc. time (CPU) sum(D_eff(t), t -> T)

[0] May also enable deeper trees
[1] Depth might differ across trees
[2] Execution path is data dependent! Can estimate average using a dataset, or worst-case from model
[3] Assuming leaf and decision nodes same size

Tree-based ensembles - costs

Utilities for estimating costs

from emlearn.evaluate.trees import
model_size_bytes,
compute_cost_estimate

Input features, length F
[0.23, 0.56, 0.11, 0.55]

Tree 1 Tree 2

Depth
D

cl1 cl2

IF features[2] < 0.74
THEN next=left
ELSE next=right

No. features F increases capacity
No. trees T increases capacity, decreases overfitting
Tree Depth D_max / D_eff increases capacity, increases overfitting
No. nodes N ≈ T * D

For generalized performance (on unseen data), need to balance overfitting.

Tree-based ensemble - predictive performance

Vary n_estimators (trees)
and one of the depth limiting hyperparameters

from sklearn.model_selection import GridSearchCV, RandomizedSearchCV

Hyperparameter tuning with scikit-learn

https://emlearn.readthedocs.io/en/latest/auto_examples/trees_hyperparameters.html

https://emlearn.readthedocs.io/en/latest/auto_examples/trees_hyperparameters.html

Bonus

TinyML for MicroPython - comparisons
Project Deployment Models Size Compute time

emlearn
-micropython

Easy. Native mod .mpy DT, RF,
KNN, CNN

Good Good

everywhereml Easy. Pure Python .py DT, RF,
SVM, KNN,

High with large
models

Poor

m2cgen Easy. Pure Python .py DT, RF,
SVM, KNN, MLP

High with large
models

Poor

OpenMV.tf Hard. Custom Fork CNN High initial size Good

ulab Hard. User C module (build-your-own)
Using ndarray
primitives

High initial size Unknown (assume
good)

Microcontroller - tiny programmable chip

Over 20 billions shipped per year!

Increasingly accessible for hobbyists

2010: Arduino Uno
2014: MicroPython
2019: MicroPython 1.10 - ESP32 PSRAM

Compute power: 1 / 1000x of a smartphone

● RAM: 0.10 - 1 000 kB
● Program space: 1.0 - 10 000 kB
● Compute 10 - 1 000 DMIPS
● Price: 0.10 - 10 USD
● Energy: 1 - 1 000 milliWatt

Efficiency is key !
Memory, compute, power

Inline Assembly

MicroPython can expose Assembler opcodes
as Python statements.

Allows to write a function in Assembler
inline in the Python program
Can compile and execute on device

Supported on ARM Cortex M chips
Not supported (yet) on ESP32

For the most hardcore hackers!

Official Documentation:
https://docs.micropython.org/en/latest/
reference/asm_thumb2_index.html Example: FIR filter implementation (cut out)

https://github.com/peterhinch/micropython-filters/
blob/master/fir.py

https://docs.micropython.org/en/latest/reference/asm_thumb2_index.html
https://docs.micropython.org/en/latest/reference/asm_thumb2_index.html
https://github.com/peterhinch/micropython-filters/blob/master/fir.py
https://github.com/peterhinch/micropython-filters/blob/master/fir.py

“Internet of Things”

Sensor node systems

Including on-sensor data processing
with Digital Signal Processing (DSP) and Machine Learning (ML)

Robotics,
Industrial automation

“Wearable devices”

Applications

Consumer Tech Industrial Fun

Cat Detector - Data Acquisition

Classify low-res images, at 1 FPS+

Using mp_camera by cnadler86
https://github.com/
cnadler86/micropython-camera-API

96x96 px grayscale.
Takes ~100 ms - OK

https://github.com/cnadler86/micropython-camera-API
https://github.com/cnadler86/micropython-camera-API

Cat Detector - Classification with CNN

emlearn_tinymaix_cnn

Go-to solution for image classification:
Convolutional Neural Network (CNN)

32x32 px input. 3 layers. Under 100 ms - OK

Preprocessing (untested)
 Downscaling 96 px -> 32 px
 Image brightness normalization

See also OpenMV - MicroPython for Computer Vision- https://docs.openmv.io/index.html

https://github.com/emlearn/emlearn-micropython/
tree/master/examples/mnist_cnn

https://docs.openmv.io/index.html
https://github.com/emlearn/emlearn-micropython/tree/master/examples/mnist_cnn
https://github.com/emlearn/emlearn-micropython/tree/master/examples/mnist_cnn

