Microcontrollers and Machine Learning

with MicroPython and emlearn

https://github.com/emlearn/emlearn-micropython

Jon Nordby jononor@gmail.com foss-north 2025

We utilise sound and vibration analysis to detect and warn you of upcoming errors in your technical infrastructure before they happen.

Soundsensing

Condition Monitoring 4.M

Trusted by Nordic market leaders

A

63

EIENDOMSSPAR

🖓 Oslo

Goal

Purpose of this presentation

You, as a **Python developer**, can **build an IoT sensor** on a **microcontroller** using **MicroPython**

+ Including on-edge Machine Learning with emlearn-micropython

Python on Microcontroller

Jumping right into it

What is a microcontroller?

Modern microcontroller: A complete programmable System-on-Chip

Example: ESP32-S3FH4R2

32 bit CPU, 240 Mhz Floating Point Unit 2 MB RAM 4 MB FLASH

WiFi Bluetooth Low Energy USB-C

Espressif ESP32-S3FH4R2 chip:2.5USDWaveshare ESP32-S3-Tiny board:6USD

Hardware tinkering optionalcomplete devices available

Complete ESP32 based device with sensors etc.:

20 - 50 USD

Installing MicroPython

Download prebuilt firmware https://micropython.org/download/?port=esp32

Flash firmware to device pip install esptool

> esptool.py --chip esp32 --port ... erase_flash esptool.py --chip esp32 --port ... write_flash -z 0 micropython-v1.17.bin

Connect to device

pip install mpremote mpremote repl MicroPython v1.8.3-24-g095e43a on 2016-08-16; ESP module Type "help()" for more information. >>> print('Hello world!') Hello world! >>>

IDE (optional): Viper IDE, Thonny, et.c.

Temperature sensor - hardware

Example MPU6886 accelerometer built-in temperature sensor

Temperature Sensor DS1820 Water-proof **Room Monitoring**

- + CO2
- + humidity
- + temperature

Temperature sensor - code

Using https://viper-ide.org/

Zero-install. Connect to device via USB

- 1. Read the sensor in a loop
- 2. Send data using MQTT
- 3. Wait until next measurement

The same approach can be used for sensing other slow changing phenomena

Using <u>peterhinch/micropython-mqtt</u> and <u>jonnor/micropython-mpu6886</u>

```
test.py • ×
    from mqtt as import MQTTClient, config
    import asyncio
 2
    from mpu6886 import MPU6886
 з
     from machine import I2C
 4
 5
    # Local configuration
     config['ssid'] = 'FIXME' # Optional on ESP8266
    config['wifi pw'] = 'FIXME'
    config['server'] = 'test.mosquitto.org'
 g
10
    mpu = MPU6886(I2C(0, sda=21, scl=22, freq=100000))
11
12
13 _ async def main(client):
        print('main-start')
14
15
         await client.connect()
        print('connected')
16
17
18 .
        while True:
19
             t = mpu.temperature
20
            print('publish-data', t)
             await client.publish('pydataglobal2024/send', f'{t:.2f}', gos = 0)
21
22
             await asyncio.sleep(30)
23
24
    MQTTClient.DEBUG = True # Optional: print diagnostic messages
25
    client = MQTTClient(config)
26 . try:
        asyncio.run(main(client))
27
28 J finally:
         client.close()
29
```

Installing packages

MicroPython has a package manager "**mip**"

Directly on device!

ViperIDE supports install via UI

Custom packages via URL

Sensor nodes with MicroPython

What can be done on an ESP32 microcontroller with MicroPython and how to make it work

Feasibility

Activity tracker

Accelerometer 100 Hz

Pure Python

Noise monitor

Microphone 16000 Hz

Nivells diaris de Ln (període nit de 23-7h) del d...

emlearn

Infinite Impulse Response filters emlearn_iir

Image Classifier

Camera 27000 bytes/s

if is_MyCat(img): open_door()

Convolutional Neural Network emlearn_cnn

Python with C modules

Sound sensor

Sound sensor

I2S digital microphone (Example wiring)

Soundlevel calculation Processing steps

′ –

Sound sensor - Install it

https://github.com/emlearn/emlearn-micropython/ tree/master/examples/soundlevel_iir

Running on device (ViperIDE)

The fastest and easiest to to install on your device is to use Viper IDE. This will install the library and the example code automatically.

V Run in ViperIDE

In Viper IDE, you can select which example file to run (described below), and hit the Play button to run it.

I2S audio input
from machine import I2S
audio_in = I2S(0, sck=Pin(26), ws=Pin(32), sd=Pin(33),
 mode=I2S.RX, bits=16,format=I2S.MON0, rate=16000,

Microphone input

allocate sample arrays
chunk_samples = int(AUDI0_SAMPLERATE * 0.125)
mic_samples = array.array('h', (0 for _ in range(chunk_samples))) # int16
memoryview used to reduce heap allocation in while loop
mic_samples_mv = memoryview(mic_samples)
global to share state between callback and main
soundlevel_db = 0.0

meter = SoundlevelMeter(buffer_size=chunk_samples, samplerate=16000)

def audio_ready_callback(arg):
 # compute soundlevel
 global soundlevel_db
 soundlevel_db = meter.process(mic_samples)
 # re-trigger audio callback
 _ = audio_in.readinto(mic_samples_mv)

def main():

Use Non-Blocking I/O with callback
audio_in.irq(audio_ready_callback)
Trigger first audio readout
audio_in.readinto(mic_samples_mv)

while True:

render_display(db=soundlevel_db)
time.sleep_ms(200)

if __name__ == '__main__':
 main()

Rendering text/widgets to screen https://github.com/peterhinch/ micropython-nano-gui

Audio filters using emlearn_iir

Standard sound level measurements are **A-weighted**. To approximate human hearing.

Implemented using Infinite Impulse Response (IIR) filters.

Must be computed within 125 ms

Python implementation **1100 ms 900% CPU**

emlearn_iir C module 30 ms 20% CPU

import emlearn_iir

Use C module for data conversion
from emlearn_arrayutils import linear_map

```
def int16_to_float (inp, out):
    return linear_map(inp, out, -2**15, 2**15, -1.0, 1.0)
```

```
def float_to_int16(inp, out):
    return linear_map(inp, out, -1.0, 1.0, -2**15, 2**15)
```

C modules

Written in C. Defines a Python module with API. functions/classes et.c.

Can be implemented by users, libraries or be part of MicroPython core.

Can be portable or specific to one hardware/platform

// Include the header file to get access to the MicroPython API
#include "py/dynruntime.h"

```
// Helper C function to compute factorial
static mp_int_t factorial_helper(mp_int_t x) {
    if (x == 0) {
        return 1;
    }
    return x * factorial_helper(x - 1);
}
```

```
// DEFINE FUNCTION. Callable from Python
static mp_obj_t factorial(mp_obj_t x_obj) {
    mp_int_t x = mp_obj_get_int(x_obj);
    mp_int_t result = factorial_helper(x);
    return mp_obj_new_int(result);
}
```

static MP_DEFINE_CONST_FUN_OBJ_1(factorial_obj, factorial);

```
// MODULE ENTRY
```

}

mp_obj_t mpy_init(mp_obj_fun_bc_t *self, size_t n_args, size_t n_kw, mp_obj_t *args) {
 // Must be first, it sets up the globals dict and other things
 MP_DYNRUNTIME_INIT_ENTRY

// Register function in the module's namespace
mp_store_global(MP_QSTR_factorial, MP_OBJ_FROM_PTR(&factorial_obj));

// This must be last, it restores the globals dict
MP_DYNRUNTIME_INIT_EXIT

Native module (.mpy) VS External C module

	Native module	External C module	
Installable at runtime	Yes, as .mpy file	No. Must be included in firmware image	
Requires SDK/toolchain	No (only to build)	Yes	
Code executes from	RAM	FLASH	
Limitations	No libc / libm linked * No static BSS *	None	
Maturity	Low *	Excellent	
Documentation	https://docs.micropython.org/ en/latest/develop/natmod.html	https://docs.micropython.org/ en/latest/develop/cmodules.html	

* Improved greatly in upcoming MicroPython (1.25+). Contributions by Volodymyr Shymanskyy, Alessandro Gatti, Damien George, and others

Activity tracker

Activity tracker - concept

Complete hardware unit T-Watch S3

Recording a dataset

har_record.py https://github.com/emlearn/emlearn-micropython/tree/master/examples/har_trees

3 separate series, 1 minute per activity Saves 10 sec .npy files Transfer over USB

Cleaned labels in Label Studio

ML on streams: Continuous classification

Implementing an IMU/accelerometer/gyro driver? Use the FIFO! https://github.com/orgs/micropython/discussions/15512

Activity Tracker - Feature Extraction

Statistical summarizations are useful time-series features, sufficient for basic Human Activity Recognition.

! Preprocessing *must be compatible between training* on host PC (CPython) *and device* (MicroPython)

Solution: Write preprocessor for MicroPython, re-use in Python

subprocess('micropython preprocess.py data.npy features.npy')

Alternative: (when using common MicroPython/CPython subset)

import mypreprocessor.py

Using micropython-npyfile to read/write Numpy .npy files https://github.com/jonnor/micropython-npyfile/

l = sorted(list(v))
l2 = [x*x for x in l]
sm = sum(l)
sqs = sum(l2)
avg = sum(l) / len(l)

median = l[MEDIAN]
q25 = l[Q1]
q75 = l[Q3]
iqr = (l[Q3] - l[Q1])

energy = ((sqs / len(l2)) ** 0.5)
std = ((sqs - avg * avg) ** 0.5)

https://github.com/emlearn/emlearn-micropython /blob/master/examples/har_trees/timebased.py

Time-based features extraction

Are Microcontrollers Ready for Deep Learning-Based Human Activity Recognition? Atis Elsts, and Ryan McConville https://www.mdpi.com/2079-9292/10/21/2640

Training model on dataset

Using a scikit-learn based pipeline.

Setup subject-based cross validation

splitter = GroupShuffleSplit(n_splits=n_splits, test_size=0.25, random_state=random_state)

Random Forest classifier

clf = RandomForestClassifier(random_state = random_state, n_jobs=1, class_weight = "balanced")

Hyper-parameter search

search = GridSearchCV(clf, param_grid=hyperparameters, scoring=metric, refit=metric, cv=splitter) search.fit(X, Y, groups=groups)

(v)	env) [jon@jon-thinkpad har_ ataset har exercise 1win	trees]\$ MIN_SAMPL dow-length 400	ES_LEAF=150,200, window-hop 10	400 python har_train.py
20	24-12-04 12:54:52 [info] data-loaded		<pre>dataset=har_exercise_1</pre>
ur	ation=0.016095876693725586	samples=32000		
20	24-12-04 12:54:56 [info] feature-extrac	tion-done	<pre>dataset=har_exercise_1</pre>
ur	ation=4.534412145614624 lab	eled_instances=19	52 total_instand	es=1952
Cl	ass distribution			
a	ctivity			
ju	mpingjack 549			
lu	nge 488			
ot	her 488			
sq	uat 427			
Na	me: count, dtype: int64			
Ma	dol unittop to (bar evenci	_ 1.1		
MO	uet written to ./nar_exerci	se_1_trees.csv		
lle	stdata written to ./har_exe	rcise_l.testdata.	npz	
Re	sults			
	n_estimators min_samples	_leaf mean_train	_f1_micro mean_	test_f1_micro
0	10	150	0.996311	0.962705
1	10	200	0.995628	0.956557
2	10	400	0 096202	0 020002

har_train.py

import emlearn converted = emlearn.convert(clf) converted.save(name='gesture', format='csv', file='model.csv')

Deploying trained model

Copy model to device

mpremote fs cp gesture_model.csv :

Load and run on device

```
import emltrees
model = emltrees.new(10, 1000, 10)
with open('eml_digits.csv', 'r') as f:
    emltrees.load_model(model, f)
```

```
features = array.array('h', ...)
out = model.predict(features)
```

Performance comparison 10 trees, max 100 leaf nodes, "digits" dataset

emlearn	1.3 ms	15 kB	
everywhereml	17.7 ms	154 kB	
m2cgen	60.1 ms	179 kB	
	Inference time	Program space	

emlearn is **10x faster and 10x more space efficient** compared to generating Python code

emlearn for C

Embedded Friendly

- Portable C99 code
- No dynamic allocations
- Header-only
- High test coverage
- Integer/fixed-point math *
- Small. 2 kB+ FLASH

Train and export a model

1. Train using standard Python ML libraries.

2. Use emlearn.convert() and .save()

import emlearn

cmodel = emlearn.convert(model, method='inline')

cmodel.save(file=mynet_model.h', name='mynet')

from sklearn.neural_network import MLPClassifier
model = MLPClassifier(hidden_layer_sizes=(100,50,25))

model.fit(X_train, Y_train)

B) scikit-learn neural network

#include <eml_net.h>

```
static const float mynet_layer_0_biases[8] = { -0.015587f, -0.005395f, -0.010957f, 0.015883f ....
static const float mynet_layer_0_weights[24] = { -0.256981f, 0.041887f, 0.063659f, 0.011013f, ...
static const float mynet_layer_1_biases[4] = { 0.001242f, 0.010440f, -0.005309f, -0.006540f };
static const float mynet_layer_1_weights[32] = { -0.577215f, -0.674633f, -0.376140f, 0.646900f, ...
static float mynet_buf1[8];
static const EmlNetLayer mynet_layers[2] = {
{ 8, 3, mynet_layer_0_weights, mynet_layer_0_biases, EmlNetActivationRelu },
{ 4, 8, mynet_layer_1_weights, mynet_layer_0_biases, EmlNetActivationSoftmax }
};
static EmlNet mynet = { 2, mynet_layers, mynet_buf1, mynet_buf2, 8 };
int32_t
mynet_predict(const float *features, int32_t n_features)
}
```

return eml_net_predict(&mynet, features, n_features);

Example of generated code

Using the C code

3. #include and call predict()

setup

// Include the generated model code #include "mynet_model.h"

// index for the class we are
detecting
#define MYNET_VOICE 1

// Buffers for input data
#define N_FEATURES 6
float features[N_FEATURES];

#define DATA_LENGTH 128
int16_t
sensor_data[DATA_LENGTH];

// Get data and pre-process it
read_microphone(sensor_data, DATA_LENGTH);
preprocess_data(sensor_data, features);

```
// Run the model
out = mynet_predict(features, N_FEATURES);
```

```
// Do something with results
if (out == MYNET_VOICE) {
    set_display("voice detected");
} else {
    set_display("");
```


loop

Summary

Modern microcontrollers are very accessible
 Runs (Micro)Python!
 ESP32 recommended
 ViperIDE easy start

MicroPython productive environment for sensor devices
 Python familiarity and ease-of-use
 mip package manager
 Good connectivity

3. Can implement advanced processing of sensor data

Accelerometer, audio, image, radar,

C modules a killer feature

emlearn-micropython: modules for DSP and Machine Learning

Conclusions

More resources

emlearn-micropython

emlearn_iir emlearn_trees emlearn_fft emlearn_cnn emlearn_neighbors Infinite Impulse Response filters Random Forest Fast Fourier Transform Convolutional Neural Networks K-nearest Neighbors

Image classification+ On-device learning

Ulab: Numpy implementation for MicroPython

https://github.com/v923z/micropython-ulab

OpenMV: Computer/Machine Vision for MicroPython h

https://openmv.io/

PyCon Berlin 2024: Machine Learning on microcontrollers using MicroPython and emlearn https://www.youtube.com/watch?v=S3GjLr0ZIE0 PyData ZA 2024: Sensor data processing on microcontrollers with MicroPython https://za.pycon.org/talks/31-sensor-data-processing-on-microcontrollers-with-micropython/

Microcontrollers and Machine Learning

with MicroPython and emlearn

https://github.com/emlearn/emlearn-micropython

Jon Nordby jononor@gmail.com foss-north 2025

Bonus

https://emlearn.readthedocs.io/en/la test/model_optimization.html

Model optimization

https://emlearn.readthedocs.io/en/la test/tree based models.html

Compute constraints

- Memory (RAM)
- Program space (FLASH)
- Inference time (CPU)
- Energy (battery)

CPU Cortex M4F

Pareto front - performance/compute tradeoffs

Many possible combinations of **predictive performance** vs **computational cost**

No point considering the non-optimal solutions!

Pareto front is formed by the set of optimal solutions - that dominate the non-optimal ones

Describes the **possible tradeoffs between predictive performance and compute**

Utilities for finding Pareto front in **emlearn.evaluate.pareto** <u>https://emlearn.readthedocs.io/en/latest/evaluate.html</u> Example: <u>https://emlearn.readthedocs.io/en/latest/auto_examples/trees_hyperparameters.html</u>

Tree-based ensembles - costs

No. featuresF [0]No. treesTTree DepthD_max [1] / D_eff [2]No. nodesN \approx T * (2 ** D)

Computational costs

Utilities for estimating costs

Memory (RAM) Program (FLASH) Exc. time (CPU)

O(**F**) O(**N**) [3] sum(**D_eff**(t), t -> **T**)

from **emlearn.evaluate.trees** import model_size_bytes, compute_cost_estimate

[0] May also enable deeper trees

[1] Depth might differ across trees

[2] Execution path is data dependent! Can estimate average using a dataset, or worst-case from model

[3] Assuming leaf and decision nodes same size

Tree-based ensemble - predictive performance

No. featuresFNo. treesTTree DepthD_max / D_effNo. nodesN \approx T * D

increases capacity increases capacity, **decreases overfitting** increases capacity, **increases overfitting**

For generalized performance (on unseen data), need to balance overfitting.

Hyperparameter tuning with scikit-learn

Vary **n_estimators** (trees) and *one* of the **depth limiting** hyperparameters

from sklearn.model_selection import GridSearchCV, RandomizedSearchCV

https://emlearn.readthedocs.io/en/latest/auto_examples/trees_hyperparameters.html

Bonus

TinyML for MicroPython - comparisons

Project	Deployment	Models	Size	Compute time
emlearn -micropython	Easy. Native mod .mpy	DT, RF, KNN, CNN	Good	Good
everywhereml	Easy. Pure Python .py	DT, RF, SVM, KNN,	High with large models	Poor
m2cgen	Easy. Pure Python .py	DT, RF, SVM, KNN, MLP	High with large models	Poor
OpenMV.tf	Hard. Custom Fork	CNN	High initial size	Good
ulab	Hard. User C module	(build-your-own) Using ndarray primitives	High initial size	Unknown (assume good)

Microcontroller - tiny programmable chip

Compute power: 1 / 1000x of a smartphone

- RAM: 0.10 1 000 kB
- Program space:
- Compute
- Price:
- Energy:

- 0.10 1 000 kB 1.0 - 10 000 kB
- 10 1 000 DMIPS
- 0.10 10 USD
 - 1 000 milliWatt

Over 20 billions shipped per year!

Increasingly accessible for hobbyists

2010: Arduino Uno 2014: MicroPython 2019: MicroPython 1.10 - ESP32 PSRAM

1

Efficiency is key ! Memory, compute, power

Inline Assembly

MicroPython can expose Assembler opcodes as Python statements.

Allows to write a function in Assembler *inline in the Python program* Can compile and execute on device

Supported on ARM Cortex M chips Not supported (yet) on ESP32

For the most hardcore hackers!

Official Documentation: https://docs.micropython.org/en/latest/ reference/asm_thumb2_index.html

out an author and them	
@micropython.asm_thumb	
def fir(r0, r1, r2):	
mov(r3, r8)	# For Pico: can't push({r8}). r0-r7 only.
<pre>push({r3})</pre>	
ldr(r7, [r0, 0])	# Array length
mov(r6, r7)	# Copy for filter
mov(r3, r0)	
add(r3, 12)	<i># r3 points to ring buffer start</i>
sub(r7, 1)	
add(r7, r7, r7)	
add(r7, r7, r7)	# convert to bytes
add(r5, r7, r3)	<pre># r5 points to ring buffer end (last valid address)</pre>
ldr(r4, [r0, 8])	# Current insertion point address
cmp(r4, 0)	<i># If it's zero we need to initialise</i>
<pre>bne(INITIALISED)</pre>	
mov(r4, r3)	<i># Initialise: point to buffer start</i>
<pre>label(INITIALISED)</pre>	
<pre>str(r2, [r4, 0])</pre>	<i># put new data in buffer and post increment</i>
add(r4, 4)	
cmp(r4, r5)	# Check for buffer end
ble(BUFOK)	
mov(r4, r3)	<i># Incremented past end: point to start</i>
label(BUFOK)	
<pre>str(r4, [r0, 8])</pre>	<i># Save the insertion point for next call</i>
	# *** Filter ***
ldr(r0, [r0, 4])	# Bits to shift

Example: FIR filter implementation (cut out) <u>https://github.com/peterhinch/micropython-filters/</u> <u>blob/master/fir.py</u>

Sensor node systems

Including on-sensor data processing

with Digital Signal Processing (DSP) and Machine Learning (ML)

Hey Google...

Consumer Tech

Industrial

12. 32

Fun

- -

Cat Detector - Data Acquisition

Classify *low-res* images, at 1 FPS+

Using mp_camera by cnadler86 <u>https://github.com/</u> <u>cnadler86/micropython-camera-API</u>

96x96 px grayscale. Takes ~100 ms - OK

Cat Detector - Classification with CNN

emlearn_tinymaix_cnn

Go-to solution for image classification: Convolutional Neural Network (CNN)

32x32 px input. 3 layers. Under 100 ms - OK

Preprocessing (untested) Downscaling 96 px -> 32 px Image brightness normalization

https://github.com/emlearn/emlearn-micropython/ tree/master/examples/mnist_cnn

import tinymaix_cnn # from emlearn-micropython

```
with open('cat_classifier.tmdl', 'rb') as f:
    model_data = array.array('B', f.read())
    model = tinymaix_cnn.new(model_data)
```

while True:

```
raw = read_camera()
img = preprocess(raw)
classification = model.predict(img)
```

```
if classification == MY_CAT:
    open_door()
```

