
Taking Python beyond scripting

foss-north 2025

Agenda

● Introduction
● Linting (Static analysis)
● Package and project management
● Demo project
● Q/A

2

Introduction

3

Mirza Krak

● 15+ years in software and hardware engineering
● T-shaped skillset

○ expertise in embedded systems (predominantly Linux)
○ internet of things
○ cloud architecture

● Open source contributor
● CTO @ ID8 Engineering AB

4

Python

● Python is a big tent, multi-paradigm interpreted language that generally allows
you to do things in the way that best suits your needs, as best determined by
you.

● 20 February 1991; 34 years ago
● Common in:

○ AI / Data
○ Backend / Web
○ Internet of Things
○ Automation / scripting
○ Infrastructure as Code

5

Beyond scripting

● Not measured by Lines of Code (LOC)
● Turning a program in to a product
● Codebase is

○ maintained over a longer period of time
○ collaborative development
○ distributed (via pip or other means)

● Types
○ command line interface (CLI)
○ modules
○ system daemons
○ microservices

6

Catching things early

7

Pitfalls moving beyond scripting

● Difficulty maintaining readability and consistency
● Insufficient testing leading to reliability issues
● Inefficient error handling
● Collaboration challenges and inconsistent coding standards
● Increased complexity in dependency management

8

Linting

9

Linting

“Lint is the computer science term for a static code analysis tool used to flag
programming errors, bugs, stylistic errors and suspicious constructs”

10

Static analysis and linting tools

● coding standards / style guides (PEP 8)
● syntax
● conventions
● code smells
● refactor
● type validation
● security

11

https://peps.python.org/pep-0008/
https://martinfowler.com/bliki/CodeSmell.html

Usage

● From command line
● Integrated with IDE/code editor
● As a pre-commit hook
● Continuous integration

12

Static analysis - Message types

● (C) convention, for programming standard violation
○ C0116: Missing function or method docstring (missing-function-docstring)

● (R) refactor, for bad code smell
○ R1705: Unnecessary "else" after "return", remove the "else" and de-indent the code inside it

(no-else-return)
● (W) warning, for python specific problems

○ W1510: 'subprocess.run' used without explicitly defining the value for 'check'.
(subprocess-run-check)

● (E) error, for much probably bugs in the code
■ E0001: Parsing failed: 'expected ':' (module.name, line 63)' (syntax-error)

13

What linters are there?

14

● It is complicated…
● Many standalone tools, with few aggregators

○ black - code formatter
○ isort - isort your imports, so you don't have to.
○ bandit - security oriented checks
○ autoflake - removes unused imports and unused variables from Python code
○ pyupgrade - automated upgrade to newer python syntax
○ pydocstringformatter - automated pep257.

https://github.com/psf/black
https://pycqa.github.io/isort/
https://github.com/PyCQA/bandit
https://github.com/PyCQA/autoflake
https://github.com/asottile/pyupgrade
https://github.com/DanielNoord/pydocstringformatter

What linters are there?

15

● It is complicated…
● Example 2:

○ Flake8, a style checker
○ Has a vast plugin ecosystem, pick and choose to build a competent linter

■ flake8-bugbear
■ flake8-bandit
■ flake8-builtins
■ flake8-docstrings
■ …

https://flake8.pycqa.org/en/latest/

A selected few

16

Pylint Flake8 Ruff wemake-pytho
n-styleguide

License GPLv2 MIT MIT MIT

Focus Style, logic
errors,
complexity

Style guide
enforcement
(PEP8)

Ultra-fast linter
+ formatter

Strict,
opinionated
code style

Speed Slower Fast Extremely fast Fast (built on
Flake8)

Extensible Yes Yes No No

Auto fix No No Yes No

https://www.pylint.org/
https://github.com/PyCQA/flake8
https://docs.astral.sh/ruff/
https://github.com/wemake-services/wemake-python-styleguide
https://github.com/wemake-services/wemake-python-styleguide

Static analysis and linting tools

● coding standards / style guides (PEP 8)
● syntax
● conventions
● code smells
● refactor
● type validation
● security

17

https://peps.python.org/pep-0008/
https://martinfowler.com/bliki/CodeSmell.html

Static analysis and linting tools

● coding standards / style guides (PEP 8)
● syntax
● conventions
● code smells
● refactor
● type validation
● security

18

https://peps.python.org/pep-0008/
https://martinfowler.com/bliki/CodeSmell.html

Python typing

● Python is a dynamically typed language
● Gradual type system (opt-in) introduced in PEP 484 (2014)
● Has seen much development since it was introduced
● https://typing.python.org (official specification)

19

https://peps.python.org/pep-0484/
https://typing.python.org

Python variable type annotations

20

Python function type annotations

21

Python function type annotations

22

Why Python typing?

● Type annotations have no runtime impact
● Help others understand their code more easily
● Catch typing problems early in the development process
● Integration with IDE

○ code completions
○ refactoring

23

Type checkers

24

mypy pyright Pyre (*) pytype

License MIT MIT MIT Apache 2.0

Developed by Community Microsoft Meta Google

LSP Community Native Native No

Language Python TypeScript Python Python

Github stars 19k 14k 7k 4k

https://mypy.readthedocs.io/en/stable/
https://microsoft.github.io/pyright/#/
https://pyre-check.org/
https://google.github.io/pytype/

Pitfalls moving beyond scripting

● Difficulty maintaining readability and consistency
● Insufficient testing leading to reliability issues
● Inefficient error handling
● Collaboration challenges and inconsistent coding standards
● Increased complexity in dependency management

25

Pitfalls moving beyond scripting

● Difficulty maintaining readability and consistency
● Insufficient testing leading to reliability issues
● Inefficient error handling
● Collaboration challenges and inconsistent coding standards
● Increased complexity in dependency management

26

Use a code formatter

● Resolve inconsistent coding standards and improve readability
● Examples:

○ Black + isort + pycodestyle
○ Ruff

27

https://github.com/psf/black
https://pycqa.github.io/isort/
https://pypi.org/project/pycodestyle/
https://docs.astral.sh/ruff/

Pitfalls moving beyond scripting

● Difficulty maintaining readability and consistency
● Insufficient testing leading to reliability issues
● Inefficient error handling
● Collaboration challenges and inconsistent coding standards
● Increased complexity in dependency management

28

Dependency management

29

Dependency management

● Using venv (basic)

30

Dependency management

● More advanced project management
○ Poetry - Python packaging and dependency management made easy
○ uv - An extremely fast Python package and project manager, written in Rust.

31

https://python-poetry.org/
https://docs.astral.sh/uv/

Demo project using uv

32

Q / A

33

Contact

34

www.linkedin.com/in/mirzakrak

mirza@id8-engineering.io

+4730280622

