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Mirza Krak

e 15+ years in software and hardware engineering
e T-shaped skillset

o expertise in embedded systems (predominantly Linux)
o internet of things
o cloud architecture

e Open source contributor
e CTO @ ID8 Engineering AB
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Python

e Python is a big tent, multi-paradigm interpreted language that generally allows
you to do things in the way that best suits your needs, as best determined by
you.

e 20 February 1991; 34 years ago

e Commonin:

Al / Data

Backend / Web
Internet of Things
Automation / scripting
Infrastructure as Code

o O O O O
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Beyond scripting
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Not measured by Lines of Code (LOC)
Turning a program in to a product
Codebase is

(©)

(@)

(©)

maintained over a longer period of time
collaborative development
distributed (via pip or other means)

Types

(©)

(@)
(@)
(@)

command line interface (CLI)
modules

system daemons
microservices



Catching things early

Developer Pushed to SCM Integration Deployed
Easy Hard

28

ENGINEERING 7




Pitfalls moving beyond scripting

Difficulty maintaining readability and consistency
Insufficient testing leading to reliability issues

Inefficient error handling

Collaboration challenges and inconsistent coding standards
Increased complexity in dependency management
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Linting

“Lint is the computer science term for a static code analysis tool used to flag
programming errors, bugs, stylistic errors and suspicious constructs”
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Static analysis and linting tools

coding standards / style guides (PEP 8)
syntax

conventions

code smells

refactor

type validation

security
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https://peps.python.org/pep-0008/
https://martinfowler.com/bliki/CodeSmell.html

Usage

From command line

Integrated with IDE/code editor
As a pre-commit hook
Continuous integration

28

ENGINEERING

12



Static analysis - Message types

e (C) convention, for programming standard violation
o  C0116: Missing function or method docstring (missing-function-docstring)
e (R) refactor, for bad code smell
o R1705: Unnecessary "else" after "return’, remove the "else" and de-indent the code inside it
(no-else-return)
e (W) warning, for python specific problems

o W1510: 'subprocess.run’ used without explicitly defining the value for ‘check'.
(subprocess-run-check)

e (E) error, for much probably bugs in the code
m EO0001: Parsing failed: 'expected "' (module.name, line 63)' (syntax-error)
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What linters are there?

e |tis complicated...

e Many standalone tools, with few aggregators

black - code formatter

isort - isort your imports, so you don't have to.

bandit - security oriented checks

autoflake - removes unused imports and unused variables from Python code
pyupgrade - automated upgrade to newer python syntax
pydocstringformatter - automated pep257.

o O O O O O
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https://github.com/psf/black
https://pycqa.github.io/isort/
https://github.com/PyCQA/bandit
https://github.com/PyCQA/autoflake
https://github.com/asottile/pyupgrade
https://github.com/DanielNoord/pydocstringformatter

What linters are there?

e |tis complicated...

e Example 2:
o Flake8, a style checker
o Has a vast plugin ecosystem, pick and choose to build a competent linter
m flake8-bugbear
flake8-bandit
flake8-builtins

|
|
m flake8-docstrings
|
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https://flake8.pycqa.org/en/latest/

A selected few
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Pylint Flake8 uff wemake-pytho
n-stylequide
License GPLv2 MIT MIT MIT
Focus Style, logic Style guide Ultra-fast linter | Strict,
errors, enforcement + formatter opinionated
complexity (PEPS8) code style
Speed Slower Fast Extremely fast | Fast (built on
Flake8)
Extensible Yes Yes No No
Auto fix No No Yes No
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https://www.pylint.org/
https://github.com/PyCQA/flake8
https://docs.astral.sh/ruff/
https://github.com/wemake-services/wemake-python-styleguide
https://github.com/wemake-services/wemake-python-styleguide

Static analysis and linting tools

coding standards / style guides (PEP 8)
syntax

conventions

code smells

refactor

type validation

security
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https://peps.python.org/pep-0008/
https://martinfowler.com/bliki/CodeSmell.html

Static analysis and linting tools

coding standards / style guides (PEP 8)
syntax

conventions

code smells

refactor

type validation

security
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https://peps.python.org/pep-0008/
https://martinfowler.com/bliki/CodeSmell.html

Python typing

Python is a dynamically typed language

Gradual type system (opt-in) introduced in PEP 484 (2014)
Has seen much development since it was introduced
https://typing.python.org (official specification)
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https://peps.python.org/pep-0484/
https://typing.python.org

Python variable type annotations
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Python function type annotations

def stringify(num):
return str(num)

def stringify(num: int) -> str:
return str(num)
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Python function type annotations

def stringify(num: int) -> str:
return str(num)

stringify("10")

Argument of type "Literal['l0']" cannot be assigned to
"num" of type "int" in function "stringify"
"Literal['10']" s not assignable to "int" (reportAr
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gumentType)
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Why Python typing?

Type annotations have no runtime impact

Help others understand their code more easily

Catch typing problems early in the development process
Integration with IDE

o code completions
o refactoring
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Type checkers
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mypy pyright Pyre (*) pytype
License MIT MIT MIT Apache 2.0
Developed by Community Microsoft Meta Google
LSP Community Native Native No
Language Python TypeScript Python Python
Github stars 19k 14k 7k 4Kk
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https://mypy.readthedocs.io/en/stable/
https://microsoft.github.io/pyright/#/
https://pyre-check.org/
https://google.github.io/pytype/

Pitfalls moving beyond scripting

e Difficulty maintaining readability and consistency
e Insufficient testing leading to reliability issues
e |nefficient error handling
e Collaboration challenges and inconsistent coding standards
e Increased complexity in dependency management
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Use a code formatter

e Resolve inconsistent coding standards and improve readability

e Examples:

o Black +isort + pycodestyle
o Ruff
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https://github.com/psf/black
https://pycqa.github.io/isort/
https://pypi.org/project/pycodestyle/
https://docs.astral.sh/ruff/

Pitfalls moving beyond scripting

e Difficulty maintaining readability and consistency
e Insufficient testing leading to reliability issues
e |nefficient error handling
e Collaboration challenges and inconsistent coding standards
e Increased complexity in dependency management
28

ENGINEERING 28




Dependency management
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Dependency management
e Using venv (basic)

python3 -m venv <DIR>
source <DIR>/bin/activate

pip freeze -1 > requirements.txt

pip install -r requirements.txt
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Dependency management

e More advanced project management

o Poetry - Python packaging and dependency management made easy
o uv - An extremely fast Python package and project manager, written in Rust.
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https://python-poetry.org/
https://docs.astral.sh/uv/

Demo project using uv
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Q/A
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Contact
mirza@id8-engineering.io

@ +4730280622

m@ www.linkedin.com/in/mirzakrak
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