D&

ENGINEERING

Taking Python beyond scripting

foss-north 2025

EEEEEEEEEEE

Agenda

Introduction

Linting (Static analysis)

Package and project management
Demo project

Q/A

28

ENGINEERING

Introduction

EEEEEEEEEEE

Mirza Krak

e 15+ years in software and hardware engineering
e T-shaped skillset

o expertise in embedded systems (predominantly Linux)
o internet of things
o cloud architecture

e Open source contributor
e CTO @ ID8 Engineering AB

128

ENGINEERING

Python

e Python is a big tent, multi-paradigm interpreted language that generally allows
you to do things in the way that best suits your needs, as best determined by
you.

e 20 February 1991; 34 years ago

e Commonin:

Al / Data

Backend / Web
Internet of Things
Automation / scripting
Infrastructure as Code

o O O O O

128

ENGINEERING

Beyond scripting

128

ENGINEERING

Not measured by Lines of Code (LOC)
Turning a program in to a product
Codebase is

(©)

(@)

(©)

maintained over a longer period of time
collaborative development
distributed (via pip or other means)

Types

(©)

(@)
(@)
(@)

command line interface (CLI)
modules

system daemons
microservices

Catching things early

Developer Pushed to SCM Integration Deployed
Easy Hard

28

ENGINEERING 7

Pitfalls moving beyond scripting

Difficulty maintaining readability and consistency
Insufficient testing leading to reliability issues

Inefficient error handling

Collaboration challenges and inconsistent coding standards
Increased complexity in dependency management

D8

ENGINEERING

EEEEEEEEEEE

Linting

“Lint is the computer science term for a static code analysis tool used to flag
programming errors, bugs, stylistic errors and suspicious constructs”

28

ENGINEERING

10

Static analysis and linting tools

coding standards / style guides (PEP 8)
syntax

conventions

code smells

refactor

type validation

security

128

ENGINEERING

11

https://peps.python.org/pep-0008/
https://martinfowler.com/bliki/CodeSmell.html

Usage

From command line

Integrated with IDE/code editor
As a pre-commit hook
Continuous integration

28

ENGINEERING

12

Static analysis - Message types

e (C) convention, for programming standard violation
o C0116: Missing function or method docstring (missing-function-docstring)
e (R) refactor, for bad code smell
o R1705: Unnecessary "else" after "return’, remove the "else" and de-indent the code inside it
(no-else-return)
e (W) warning, for python specific problems

o W1510: 'subprocess.run’ used without explicitly defining the value for ‘check'.
(subprocess-run-check)

e (E) error, for much probably bugs in the code
m EO0001: Parsing failed: 'expected "' (module.name, line 63)' (syntax-error)

D8

ENGINEERING

13

What linters are there?

e |tis complicated...

e Many standalone tools, with few aggregators

black - code formatter

isort - isort your imports, so you don't have to.

bandit - security oriented checks

autoflake - removes unused imports and unused variables from Python code
pyupgrade - automated upgrade to newer python syntax
pydocstringformatter - automated pep257.

o O O O O O

128

ENGINEERING

14

https://github.com/psf/black
https://pycqa.github.io/isort/
https://github.com/PyCQA/bandit
https://github.com/PyCQA/autoflake
https://github.com/asottile/pyupgrade
https://github.com/DanielNoord/pydocstringformatter

What linters are there?

e |tis complicated...

e Example 2:
o Flake8, a style checker
o Has a vast plugin ecosystem, pick and choose to build a competent linter
m flake8-bugbear
flake8-bandit
flake8-builtins

|
|
m flake8-docstrings
|

128

ENGINEERING

https://flake8.pycqa.org/en/latest/

A selected few

28

ENGINEERING

Pylint Flake8 uff wemake-pytho
n-stylequide
License GPLv2 MIT MIT MIT
Focus Style, logic Style guide Ultra-fast linter | Strict,
errors, enforcement + formatter opinionated
complexity (PEPS8) code style
Speed Slower Fast Extremely fast | Fast (built on
Flake8)
Extensible Yes Yes No No
Auto fix No No Yes No

16

https://www.pylint.org/
https://github.com/PyCQA/flake8
https://docs.astral.sh/ruff/
https://github.com/wemake-services/wemake-python-styleguide
https://github.com/wemake-services/wemake-python-styleguide

Static analysis and linting tools

coding standards / style guides (PEP 8)
syntax

conventions

code smells

refactor

type validation

security

128

ENGINEERING

17

https://peps.python.org/pep-0008/
https://martinfowler.com/bliki/CodeSmell.html

Static analysis and linting tools

coding standards / style guides (PEP 8)
syntax

conventions

code smells

refactor

type validation

security

128

ENGINEERING

18

https://peps.python.org/pep-0008/
https://martinfowler.com/bliki/CodeSmell.html

Python typing

Python is a dynamically typed language

Gradual type system (opt-in) introduced in PEP 484 (2014)
Has seen much development since it was introduced
https://typing.python.org (official specification)

128

ENGINEERING

19

https://peps.python.org/pep-0484/
https://typing.python.org

Python variable type annotations

128

ENGINEERING

20

Python function type annotations

def stringify(num):
return str(num)

def stringify(num: int) -> str:
return str(num)

128

ENGINEERING

21

Python function type annotations

def stringify(num: int) -> str:
return str(num)

stringify("10")

Argument of type "Literal['l0']" cannot be assigned to
"num" of type "int" in function "stringify"
"Literal['10']" s not assignable to "int" (reportAr

128

ENGINEERING

parameter

gumentType)

22

Why Python typing?

Type annotations have no runtime impact

Help others understand their code more easily

Catch typing problems early in the development process
Integration with IDE

o code completions
o refactoring

128

ENGINEERING

23

Type checkers

D8

ENGINEERING

mypy pyright Pyre (*) pytype
License MIT MIT MIT Apache 2.0
Developed by Community Microsoft Meta Google
LSP Community Native Native No
Language Python TypeScript Python Python
Github stars 19k 14k 7k 4Kk

24

https://mypy.readthedocs.io/en/stable/
https://microsoft.github.io/pyright/#/
https://pyre-check.org/
https://google.github.io/pytype/

Pitfalls moving beyond scripting

e Difficulty maintaining readability and consistency
e Insufficient testing leading to reliability issues
e |nefficient error handling
e Collaboration challenges and inconsistent coding standards
e Increased complexity in dependency management
28

ENGINEERING 25

Pitfalls moving beyond scripting

e Difficulty maintaining readability and consistency
e Insufficient testing leading to reliability issues
e |nefficient error handling
e Collaboration challenges and inconsistent coding standards
e Increased complexity in dependency management
28

ENGINEERING 26

Use a code formatter

e Resolve inconsistent coding standards and improve readability

e Examples:

o Black +isort + pycodestyle
o Ruff

128

ENGINEERING

27

https://github.com/psf/black
https://pycqa.github.io/isort/
https://pypi.org/project/pycodestyle/
https://docs.astral.sh/ruff/

Pitfalls moving beyond scripting

e Difficulty maintaining readability and consistency
e Insufficient testing leading to reliability issues
e |nefficient error handling
e Collaboration challenges and inconsistent coding standards
e Increased complexity in dependency management
28

ENGINEERING 28

Dependency management

EEEEEEEEEEE

Dependency management
e Using venv (basic)

python3 -m venv <DIR>
source <DIR>/bin/activate

pip freeze -1 > requirements.txt

pip install -r requirements.txt

128

ENGINEERING

30

Dependency management

e More advanced project management

o Poetry - Python packaging and dependency management made easy
o uv - An extremely fast Python package and project manager, written in Rust.

128

ENGINEERING

31

https://python-poetry.org/
https://docs.astral.sh/uv/

Demo project using uv

EEEEEEEEEEE

Q/A

EEEEEEEEEEE

Contact
mirza@id8-engineering.io

@ +4730280622

m@ www.linkedin.com/in/mirzakrak

28

ENGINEERING

