
Table of Contents

Forking QEMU to emulate and secure the Tillitis TKey
MC

Tillitis history
Tillitis TKey: a new kind of security token?

Tillitis Tkey: a small open source/open hardware computer

You can use the TKey for
Advantages

Basic TKey use with killer app: tkey-ssh-agent
But… It's a general computer!?

Measured boot

Advantages of measured boot
TKey specs

Hardware design and testing tools
FPGA chip

In the FPGA

Software
Status

The emulator
Why an emulator?

QEMU - the gold standard
Goal

Reality

Using the emulator
Starting a TKey emulator

Interacting with emulated TKey
Debugging with GDB and qemu

Staying up to date with upstream

Story time!
The bug

The exploit

Fix
Investigation

Order in memory
Order in memory on real hardware

But the signing context?

The real fix
Future of the emulator

Future of the TKey
Summary

The end

Forking QEMU to emulate and secure the Tillitis TKey

MC

Michael “MC” Cardell Widerkrantz, mc@tillitis.se

Member of Technical Staff @ https://tillitis.se/
Personal: https://hack.org/~mc/ & gemini://gem.hack.org/mc/

Tillitis history

https://tillitis.se/
https://hack.org/~mc/
gemini://gem.hack.org/mc/

Born at Mullvad VPN's Trustworthy Computing Research team.

TCR team split in September 2022:

Glasklar Teknik AB https://www.glasklarteknik.se/ Projects:

https://system-transparency.org/
https://sigsum.org/

Tillitis: The hardware department! https://tillitis.se/

Tillitis TKey: a new kind of security token?

Joachim Strömbergson presented the TKey at foss-north 2023.

“a radically open authentication platform that fits in your pocket”.

https://www.glasklarteknik.se/
https://system-transparency.org/
https://sigsum.org/
https://tillitis.se/

“fully open - from circuit board to applications, and yet provides strong security foundations.”

Tillitis Tkey: a small open source/open hardware computer

A RISC-V computer for sensitive computations.

No secure enclave! No black box!
Open source software and hardware (BSD2, CERN-OHL, some parts still GPLv2 but moving to BSD2.)

https://github.com/tillitis

https://dev.tillitis.se/

You can use the TKey for

Authentication.

Digital signatures.
Hardware root of trust.

(Signed) random number generator.

Encryption.
A protected environment for sensitive computations.

Other things… It's a general computer!

https://github.com/tillitis
https://dev.tillitis.se/

Advantages

The client (computer/mobile) decides the function of the TKey.
No need for new hardware for new functionality.

Can write custom software.

No risk for persistent threats.
Secrets and private keys are not stored persistently on the device.

You can verify that the TKey comes from the vendor.
You can make your own TKey, or just choose your own base hardware secret.

Basic TKey use with killer app: tkey-ssh-agent

I want to login to something, typically a server (or Github, Gitlab or even sign my Git commits):

My client started the tkey-ssh-agent automatically when I logged in.
I insert the TKey into my client.

ssh some-server

The agent automatically loads the device app signer, Ed25519 signatures.

TKey starts to blink the status LED.
I touch the sensor.

“I'm in!”

Just like any security token.

But… It's a general computer!?

How can we trust general applications sent from the client?

What if we don't share anything between the apps?

…and guarantee software integrity?
…by measuring the apps,

and creating new secrets for this combination of app and device.
These secrets never leave the TKey.

Measured boot

Use immutable code to measure the application, mix in a hardware secret: get a new identity!

Inspired by TCG DICE (nee RIoT from Microsoft Research): Trusted boot for constrained environments.

Advantages of measured boot

Software integrity is guaranteed.

(And verifiable, if you have a public key.)

The measured identity can be used to create key material.
Private keys are not stored on the TKey.

Unlimited number of private keys.
Secrets don't leak between device applications.

Different than verified boot
Forced verified boot would lock TKey device apps to a specific vendor.

Unacceptable in an open platform!

Compound Device Identity

Result of measured boot:

cdi := blake2s(uds, blake2s(application), uss)

CDI is a cryptograpic mix of:

Unique Device Secret (UDS) in hardware, something the user has.

Optional User Supplied Secret (USS), something the user knows.
Measurement (hash digest) of TKey device application, the integrity of the application.

TKey specs

32 bit RISC-V PicoRV32 (Claire Wolf) softcore @ 18 MHz.
128 kiB RAM.

Memory mapped hardware cores.
Firmware mode/app mode.

No interrupts.

No persistent storage. (1 MiB flash usable during hardware dev.)

No OS.

Hardware design and testing tools

Only open source tools!

Chip design in Verilog.
Limits choice of FPGA chip.

Limits choice of PCB manufacturers.
Yosys & NextPNR for synthesis, place & route, mapping and timing.

Icestorm tools for bitstream generation.

Developed NVCM programming tools.
Icarus and Verilator for module and systems simulation.

PCB design with KiCAD.
Everything published!

FPGA chip

Lattice iCE40 UltraPlus UP5K FPGA.

Good support in open source tools.
Lockable internal configuration memory (NVCM).

Limited resources (~5 k LUTs, 120 kbit block RAM, 1024 kbit SPRAM).
Paying for reversing other FPGA chips.

In the FPGA

CPU
ROM

RAM

FW_RAM
Timer

UART
UDS

Touch sensor

TRNG
TK1

Security Monitor
GPIO (unused)

Software

Emulator: friendly qemu fork, also as OCI image.
Simple firmware/boot loader. (~4 kiB)

Some client applications: tkey-ssh-agent, tkey-verification, tkey-sign, tkey-random-generator, and their

device applications.
Client libraries: Go. Python and Java PoC.

External: TypeScript using WebSerial!
Device libraries: C supported, from LLVM-15.

External: Rust (rusTKey).

Initial bringup of Zig.
tkey-builder OCI image for podman/docker.

Status

First official hardware release in March 2023: https://shop.tillitis.se/
Several client apps available for Linux, macOS, and Windows.

Reproducible builds:
For FPGA bitstream, firmware.

For all TKey device apps.

For client apps, but not on macOS (shared libs).
Device verification service up and running.

Everything released on Github: https://github.com/tillitis/

The emulator

Why an emulator?

https://shop.tillitis.se/
https://github.com/tillitis/

Allows a developer of both firmware and device apps:

to inspect,
debug,

validate functions,
observe memory like the stack, registers, …

while running the real, unchanged, software.

Allows chip engineer/software engineer
Experiment with the hardware/software interface.

Better communicate ideas to software developers.
During security audits and testing:

Verify memory locations.

Observe internal protocols (coming).

QEMU - the gold standard

Already had RV32IMC support!

Bonus: Compatible flash chip support for next release, codename Castor.
We had some previous experience, but not much.

Huge, complex.

Goal

Always develop new hardare/software interface in emulator first.
Experiment with software on top of interface, get a feeling. Difficult to get feeling from specs.

Use for development of firmware.
Use for all development of device and client apps.

Reality

Worked in the beginning.

Enormous payoff in explorative development.

Very good for communication between hardware and software engineers.

Very good for initial firmware development. Could begin without hardware.

However:

Sometimes hard to keep up with hardware development. Priority on other software development.

Using the emulator

Starting a TKey emulator

$ qemu-system-riscv32 -nographic -M tk1,fifo=chrid,htif=on \

-bios qemu_firmware.elf -chardev pty,id=chrid -s -d guest_errors

...

char device redirected to /dev/pts/12 (label chrid)"

Interacting with emulated TKey

$ tkey-runapp --port /dev/pts/12 app.bin

Debugging with GDB and qemu

qemu can speak GDB's remote protocol if you start with -s or -S.

$ riscv32-elf-gdb app.elf \

-ex "set architecture riscv:rv32" \

-ex "target remote :1234"

NOTE: You feed the .bin to qemu, but you debug the .elf!

Staying up to date with upstream

qemu moves a lot!

Last time we tried to catch up to upstream:

7,079 files changed +780821 -415571 lines changed

Story time!

Both pro and con qemu.
Time-of-check, time-of-use bug in signer found by Sergei Volokitin, Hexplot.

Full writeup: https://bugbounty.tillitis.se/security-bulletins/tillitis-security-bulletin-240115-1/

The bug

When you sent a message to the signer app to be signed, you specified a length.
If this length was too large, you received an error, but the length you sent was still used (time-of-check,

time-of-use)!

The exploit

This can leak memory.

Exploit: Set increasingly larger size (perhaps 1 extra byte) of the message to sign.

Send max size (4 k) message.
Get some already existing RAM included in the signature.

Try to verify the signature on all 256 values of the extra byte until it verifies.
Profit!

Repeat for more bytes…

Fix

Easy. Just refuse to set the internal size variable if it's wrong.
Or…?

Investigation

https://bugbounty.tillitis.se/security-bulletins/tillitis-security-bulletin-240115-1/

Find out what we leaked.

Depends on order things are in memory?

Order in memory

In one of the versions we investigated (from gdb):

message = 0x4001ee98

secret_key = 0x4001edf8

r = 0x4001ebe0*

Phew!

r is the Ed25519 signing context.

Order in memory on real hardware

We looked into what happens when we reach the top of the memory on real hardware…

Hardware wrapped memory access!!!! Aaah!

But the signing context?

The signing itself also uses the stack!

Placement matters! Where is it!?

…before secret key! Phew!

--------------------------- <--- 0x40020000

| STACK |

| .. |

| message ↑ | <--- start of exploit, grows

| .. | towards higher addresses

| Private key |

| .. |

| Signing context | <--- An exploit stops here

| .. |

| - - - - - - - - - - - - |

| .. |

| |

| Unused area, |

| randomized at power up |

| |

| .. |

| - - - - - - - - - - - - |

| APP | <--- Wraps and continue to read upwards

--------------------------- <--- 0x40000000

The real fix

Refuse to set size variable if it's too big.

Guarantee position of private key data compared to message to sign.
Fix hardware addressing not to wrap RAM access. From tag TK1-24.03. Beginning with serial number

0x01337082 0x00000001.

Future of the emulator

Emulator kind of thrown together for the things we needed at the time for development.
Maintained after the fact, not necessarily during development, as we intended.

Bring emulator up to speed with next release, codename Castor.
Maybe find something easier to work with, that is more exact and easier to hack on, not that complex, and

not with such movement upstreams.
Several Go implementations of RV32IMC available.

No flash, though.

But how hard can it be?

Future of the TKey

The Next Generation - Castor:

Storage, but isolated per app.
System calls! “Operating system”.

Much faster client communication.
More USB endpoints: HID FIDO, probably CCID.

Summary

USB stick form factor authenticator.
…but really a general computer in disguise!

Which uses measured boot to create unique identities based on what the user has, knows, and the
software integrity.
Developed with our own fork of qemu.

Emulator helps a lot.
Verify on real hardware! You might be suprised!

The end

Michael “MC” Cardell Widerkrantz, mc@tillitis.se, mc@hack.org
General inquiries, hello@tillitis.se
#tillitis @ irc.oftc.org, #tillitis:matrix.org

Web: https://tillitis.se/
Buy stuff! https://shop.tillitis.se/

Developer's handbook: https://dev.tillitis.se/

https://tillitis.se/
https://shop.tillitis.se/
https://dev.tillitis.se/

