
MariaDB Vector: Making AI
transparent on your own data
Use case: Wikipedia editing with RAG

foss-north, Göteborg, Sweden
Fri 14 Apr 2025

Robert Silén
robert.silen@mariadb.org
Community Advocacy, MariaDB Foundation

mailto:kaj@mariadb.org

2

Why transparency on AI on your own data?

● When accuracy, sources and accountability matter for the user
● When you need control and insight to intermediate steps

How: Use an open source database for your AI apps:
● Store all data in the same open source standard RDBMS: data,

sources, vectors and intermediate results
● Single queries can combine vector & standard data
● Developers know the standard RDBMSes
● Numerous tools work with the standard RDBMSes
● Lack of vendor lock in
● Lower total cost

MariaDB Foundation
https://mariadb.org

1. Use case: RAG for editing Wikipedia

2. What exactly is MariaDB Server?
3. What AI functionality does MariaDB have?
4. What are the main use cases for MariaDB Vector?
5. Steps in creating a RAG with MariaDB Vector
6. So where is the advantage of using MariaDB?

7. Technical details (another TOC; on your own time)

3

Agenda

MariaDB Foundation
https://mariadb.org

Definition: MariaDB is a mature extended fork of MySQL.
● It’s near plug-in compatible with MySQL
● It's fully open source
● It’s more performant
● It adds plenty of functionality on top (sql_mode=Oracle)

Compare MariaDB to:
● MySQL (but no vector indexing in Open Source)
● PostgreSQL (PG Vector! but slower, plug-in)
● Vector databases (but specialised)
● Oracle Database (but no vector contender)

4

What exactly is MariaDB Server?

MariaDB Foundation
https://mariadb.org

Vector indexing and search: We store and search vectors!
● You decide how you create the vectors (outside MariaDB)
● We store and index your vectors (now HNSW)

○ any data (text, images, videos, sound)
● We search your vectors (Euclidean, Cosine, soon pushdown)

○ Nearest-neighbour search
● Combining the above with all the existing other data
● Pushdown WHERE conditions: combine search criteria

This is exactly what a standard database is supposed to do!

5

What AI functionality does MariaDB have?

MariaDB Foundation
https://mariadb.org

Classic RAG: Retrieval-Augmented Generation
● Do a “specialised ChatGPT”, which gives answers only

based on your own data
● Implement this with high relevance (“quality”) and at

reasonable cost

Smarter generic search: In online stores and elsewhere
● “You may also be interested in this product”
● Give best guess responses despite vague text input
● Can be combined with exact push-down conditions

6

What are the main use cases
for MariaDB Vector?

MariaDB Foundation
https://mariadb.org

RAG - Context for AI answers
1. Preparation Phase: Ingestion
Break content into chunks
→ Convert to vector with embedding model
→ Store in vector DB

2.1 Query-Time: Retrieval
Convert user query to vector embeddings
→ Search nearest neighbors
→ Retrieve relevant text chunks

2.2 Query-Time: Answering
Combine query + retrieved context
→ Send as one text prompt to language model
→ Generate answer

Assumption: You want to create a specialised ChatGPT
1. You have a mass of text (articles, documentation)
2. The app should answer free-form questions using that text

Step one: Embed the text mass, in a batch run (not “train”)
3. Identify the proper chunk size (unit to index)
4. Create and store the chunks in MariaDB (using eg. Python)
5. Vectorise the chunks (using your favourite LLM)
6. Store and index the vectors (using MariaDB), including

“classic” database fields that point to the keys of the
chunks in source data

8

Steps in creating a RAG with MariaDB Vector
1/2

MariaDB Foundation
https://mariadb.org

Step two: Run-time, answer the user’s free-form question
1. Vectorise the user question (using the same LLM)
2. Search the vector index for the top five-ten nearest

neighbours to the vectorised user question (in MariaDB)
3. Concatenate the text chunks of the neighbours into an

adequately sized text (in Python)
4. Ask the LLM using the user question as prompt and the

concatenated text as context

Voilà: You have provided the user with an answer to a
question, based only on your own data, at a low token cost

9

Steps in creating a RAG with MariaDB Vector
2/2

MariaDB Foundation
https://mariadb.org

10

Prompt template

You are tasked to answer a question using only the following
information:
 [chunk1], [chunk2], [...]
This is the question for you to answer:
 <User query>
Answer with explicit chunk metadata (pages, chapters, url)

MariaDB Foundation
https://mariadb.org

11

Prompt example
System prompt: You are a Wikipedian-bot that uses only given sources to improve
wikipedia articles. You follow general principles of Wikipedia. You will need the
following material to complete the task below:

<source>
<metadata>
Type: book
Author: Maria Vainio-Kurtakko
Title: Ett gott parti : Scener ur Ellan de la Chapelles och Albert Edelfelts liv
Year: 2022
Publisher: Svenska litteratursällskapet i Finland
Chapter: {name of chapter}
Pages: {x-y}
</metadata>
<source_chunk> {e.g. specific section about Louis Pasteur source.}
</source_chunk></source>

<wikipedia_article url=https://sv.wikipedia.org/wiki/Louis_Pasteur>
<content> {Content of whole article, or part of article} </content>
</wikipedia_article>

<task_instructions>
Using only facts from the given material, suggest one additional new paragraph to
the given Wikipedia article in the same language as the Wikipedia article.
Remember to write from the perspective of the article. Suggest what existing
header to add the new paragraph to, and a new header for this content. Give three
suggestions, with each being half as long as the previous.

Reply without explanations in JSON format with a list of dicts with values
'header_existing', 'header_new' and 'paragraph'. A suitable beginning of each
paragraph could be '{person's surname} was {nature of relationship} with Albert
Edelfelt'
</task_instructions>

MariaDB Foundation
https://mariadb.org

Enable and audit the intermediate steps
1. Debug your chunkification; verify intermediate results
2. Test various chunkification strategies

Reuse the index
3. Once every user query
4. Make a summary, an analysis

Save cost
5. Do all the searches on your own database
6. Minimise the expensive usage of AI tokens (“words”)

12

So where is the advantage of using MariaDB?

MariaDB Foundation
https://mariadb.org

Further slides: Technical Details

13MariaDB Foundation
https://mariadb.org

● 16-19 What are vectors
● 20-25 Two-dimensional nns picture (nearest neighbour)
● 27 CREATE TABLE .. MariaDB syntax example
● 28 Python syntax example
● 29-36 Schemas illustrating RAG
● 38 MariaDB function syntax
● 39 How to download MariaDB Vector

https://mariadb.org/download
● 40 Benchmarks: MariaDB Vector is fast!
● 32 Deep dive: Index hierarchy
● Docs: https://mariadb.org/projects/mariadb-vector/

https://mariadb.org/download
https://mariadb.org/projects/mariadb-vector/

MariaDB Vector Integration Frameworks

AI framework integrations
● LangChain, MariaDB Vector Store - python
● LangChain.js, MariaDB Vector Store - node.js
● LangChain4j, MariaDB Embedding Store - java
● LlamaIndex, MariaDB Vector Store - python
● Spring AI, MariaDB Vector Store - java
● VectorDBBench - benchmarking for vector databases

Potential future integrations
● AutoGen - agent to agent
● DSPy - workflow
● Feast - machine learning (not GenAI)
● LangGraph - agentic workflow
● MCP (Model Context Protocol) - integration to external data sources and tools
● Open WebUI - AI Interface
● Google IDX template for MariaDB - visit link to vote for suggestion

https://pypi.org/project/langchain-mariadb/
https://js.langchain.com/docs/integrations/vectorstores/mariadb/
https://docs.langchain4j.dev/integrations/embedding-stores/mariadb/
https://docs.llamaindex.ai/en/stable/api_reference/storage/vector_store/mariadb/
https://docs.spring.io/spring-ai/reference/api/vectordbs/mariadb.html
https://github.com/zilliztech/VectorDBBench/pull/375
https://github.com/microsoft/autogen
https://github.com/stanfordnlp/dspy
https://github.com/feast-dev/feast
https://github.com/langchain-ai/langgraph
https://github.com/modelcontextprotocol
https://github.com/open-webui/open-webui
https://idx.uservoice.com/forums/953956-general/suggestions/49702310-mariadb-vector

Thank you!

Contact details:
robert.silen@mariadb.org

About:
https://mariadb.org/projects/mariadb-vector/

https://sv.wikipedia.org/wiki/Wikipedia:Projekt_Fredrika/SLS-AI-pilot

15MariaDB Foundation
https://mariadb.org

mailto:robert.silen@mariadb.org
https://mariadb.org/projects/mariadb-vector/
https://sv.wikipedia.org/wiki/Wikipedia:Projekt_Fredrika/SLS-AI-pilot

16

What is an embedding model vs
generative model?

● ChatGPT is a generative model.
○ It takes a prompt.
○ Generates the most likely "correct" sequence of words

as response.

● An embedding model generates a vector embedding for a
particular prompt.

MariaDB Foundation
https://mariadb.org

17

What is a Vector Embedding?

MariaDB Foundation
https://mariadb.org

Simply a list of numbers (that describe “features” of the original)

18

What is a Vector Embedding?

MariaDB Foundation
https://mariadb.org

Embedding
AI Model

(OpenAI,
HuggingFace,

etc.)

Text

Image

Video

Output

Output

Output

[0.4, 0.2, …. 0.1]

[0.5, 0.1, …. 0.2]

[0.3, 0.2, …. 0.3]

Simply a list of numbers (that describe “features” of the original)

19

What is a Vector Embedding?

MariaDB Foundation
https://mariadb.org

Embedding
AI Model

(OpenAI,
HuggingFace,

etc.)

Text

Image

Video

Output

Output

Output

[0.4, 0.2, …. 0.1]

[0.5, 0.1, …. 0.2]

[0.3, 0.2, …. 0.3]

These are points in a
multi-dimensional

space

20

2D example

MariaDB Foundation
https://mariadb.org

21

2D example

MariaDB Foundation
https://mariadb.org

P1

22

2D example

MariaDB Foundation
https://mariadb.org

P1
P2

23

2D example

MariaDB Foundation
https://mariadb.org

P1
P2

P3

24

2D example

MariaDB Foundation
https://mariadb.org

P1
P2

P3

The document
associated with
P1 is more similar
to P3 than P2,

according to the
model that
generated the
points!

25

2D example

MariaDB Foundation
https://mariadb.org

P1
P2

P3

The document
associated with
P1 is more similar
to P3 than P2,

according to the
model that
generated the
points!

"What is the best
coffee machine?"

1. Install a vector database (MariaDB Vector preview now
available)

2. Install an Embedding Model
or
Setup a cloud hosted model API.

3. Change your application to query the Embedding Model for
each document insert and insert the embeddings into the
database.

4. Make use of VEC_DISTANCE function to get the
(approximate) nearest neighbors.

26

As a database user, what must you do?

MariaDB Foundation
https://mariadb.org

CREATE TABLE PRODUCTS (
name varchar(200) primary key,
description longtext,
embedding blob,
VECTOR INDEX (embedding) MHNSW_M=5

)

 27

Create an embedding index

MariaDB Foundation
https://mariadb.org

PRODUCTS

NAME DESCRIPTION EMBEDDING

"Coffee Maker" "Can brew 10 different
coffee types. 5 years

warranty."

[0.4, 0.5, 0.3, ….., 0.2]

def add_product(db_conn, product, ai_model):
 vector = ai_model.get_embedding(product.name +
 product.description)
 db_conn.execute(
 'INSERT INTO products (name, description, embedding)'
 'values (?, ?, ?)',
 (product.name, product.description, vector))

28

Modify insert

MariaDB Foundation
https://mariadb.org

PRODUCTS

NAME DESCRIPTION EMBEDDING

"Coffee Maker" "Can brew 10 different
coffee types. 5 years

warranty."

[0.4, 0.5, 0.3, ….., 0.2]

29

Where Vector search comes into play?

MariaDB Foundation
https://mariadb.org

Web Store

Embedding
AI Model

(OpenAI,
llama, etc.)

MariaDB

BackEnd
HTTP
Server

30

Where Vector search comes into play?

MariaDB Foundation
https://mariadb.org

Web Store

Embedding
AI Model

(OpenAI,
llama, etc.)

MariaDB

1. User searches
for product BackEnd

HTTP
Server

31

Where Vector search comes into play?

MariaDB Foundation
https://mariadb.org

Web Store

Embedding
AI Model

(OpenAI,
llama, etc.)

MariaDB

1. User searches
for product BackEnd

HTTP
Server

2. Generate Embedding
from user query

32

Where Vector search comes into play?

MariaDB Foundation
https://mariadb.org

Web Store

Embedding
AI Model

(OpenAI,
llama, etc.)

MariaDB

1. User searches
for product BackEnd

HTTP
Server

2. Generate Embedding
from user query 3. Return Embedding

[0.5, 0.7, … 0.3]

33

Where Vector search comes into play?

MariaDB Foundation
https://mariadb.org

Web Store

Embedding
AI Model

(OpenAI,
llama, etc.)

MariaDB

1. User searches
for product BackEnd

HTTP
Server

2. Generate Embedding
from user query 3. Return Embedding

[0.5, 0.7, … 0.3]

4. Run SQL Query

34

Where Vector search comes into play?

MariaDB Foundation
https://mariadb.org

Web Store

Embedding
AI Model

(OpenAI,
llama, etc.)

MariaDB

1. User searches
for product BackEnd

HTTP
Server

2. Generate Embedding
from user query 3. Return Embedding

[0.5, 0.7, … 0.3]

SELECT p.name, p.description
FROM products p
ORDER BY
 VEC_DISTANCE(
 Vec_FromText("[0.5,0.7,…,0.3]"),
 p.embedding)
LIMIT 104. Run SQL Query

35

Where Vector search comes into play?

MariaDB Foundation
https://mariadb.org

Web Store

Embedding
AI Model

(OpenAI,
llama, etc.)

MariaDB

1. User searches
for product BackEnd

HTTP
Server

2. Generate Embedding
from user query

4. Run SQL Query

5. Database returns results

SELECT p.name, p.description
FROM products p
ORDER BY
 VEC_DISTANCE(
 Vec_FromText("[0.5,0.7,…,0.3]"),
 p.embedding)
LIMIT 10

3. Return Embedding
[0.5, 0.7, … 0.3]

36

Where Vector search comes into play?

MariaDB Foundation
https://mariadb.org

Web Store

Embedding
AI Model

(OpenAI,
llama, etc.)

MariaDB

1. User searches
for product BackEnd

HTTP
Server

2. Generate Embedding
from user query

4. Run SQL Query

5. Database returns results

6. User
recommendation

SELECT p.name, p.description
FROM products p
ORDER BY
 VEC_DISTANCE(
 Vec_FromText("[0.5,0.7,…,0.3]"),
 p.embedding)
LIMIT 10

3. Return Embedding
[0.5, 0.7, … 0.3]

37

What's the catch?
1. Searching for vectors is expensive
2. Indexing strategies for vectors are only "approximate",

they don't guarantee the exact "nearest" neighbour.
3. Depending on dataset, some indexing strategies perform

better than others.
4. Indexing generally requires a lot of memory.

a. HNSW — Hierarchical Navigable Small Worlds
i. de-facto industry standard.

Implemented in MariaDB
ii. Large memory usage.

b. IVFFlat — Low resource usage, poor search quality,
present in pgvector

MariaDB Foundation
https://mariadb.org

38

Project status

● 11.7 is first stable release (MDEV-33408)
● Performance faster than pgVector on SELECTS (better

scaling)
○ More optimizations planned (ARM, PowerPC operations).

● Preview of MariaDB Vector syntax supports:
○ VEC_DISTANCE
○ VEC_DISTANCE_COSINE (euclidean / cosine distance)
○ VEC_FromText() VEC_ToText()

● Work collaboratively with MariaDB plc and other vendors
(large contributions from Amazon)

MariaDB Foundation
https://mariadb.org

https://jira.mariadb.org/browse/MDEV-33408

https://mariadb.com/es/resources/blog/how-fast-is-mariadb-vector/

https://mariadb.com/es/resources/blog/how-fast-is-mariadb-vector/

https://mariadb.com/es/resources/blog/how-fast-is-mariadb-vector/

https://mariadb.com/es/resources/blog/how-fast-is-mariadb-vector/

42

Index Construction
1. HNSW index is stored as a

separate auxiliary table

[layer, tref, vec,
neighbors]

2. ACID benefits of the
underlying storage engine.

3. A bit more overhead than
having it natively within
the SE.

4. More flexible. MariaDB Foundation
https://mariadb.org

43

Index Construction
1. HNSW allows online

construction.

2. HNSW does not have a native
DELETE method.

3. Parameters that influence
index quality / speed:
a. mhnsw_max_edges_per_node

(5-8 is ok)

MariaDB Foundation
https://mariadb.org

44

Index Lookup
1. Traverse the graph from upper

layer to lower layer.

2. Parameters that influence
results:

3. mhnsw_ef_search from HNSW
paper

4. Higher values produce better
recall.
(percentage of results which
are true minimums)

MariaDB Foundation
https://mariadb.org

45

Index Lookup
1. MariaDB has a dedicated

shared-statement cache to
store the graph in memory.

mhnsw_cache_size

Ideally this should fit all
your vector data for best
performance.

MariaDB Foundation
https://mariadb.org

46

Possible future directions?
1. Plugins to generate embedding on insert.

2. Storage Engine for Vector Embeddings generation
(CONNECT SE can fulfill this to some degree already)

3. More vector indexing algorithms.
a. IVFFlat is a Google Summer of Code project this

year.

4. Performance optimizations - Index Condition pushdown

MariaDB Foundation
https://mariadb.org

Thank you!

Contact details:
kaj@mariadb.org

vicentiu@mariadb.org

About:
https://mariadb.org/projects/mariadb-vector/

https://mariadb.org/kaj
https://mariadb.org/vicentiu

47MariaDB Foundation
https://mariadb.org

mailto:kaj@mariadb.org
mailto:vicentiu@mariadb.org
https://mariadb.org/projects/mariadb-vector/
https://mariadb.org/kaj
https://mariadb.org/vicentiu

